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A practical way to model convection in non-agitated electrolytes
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Many electrochemical experiments are performed in non-agitated or in non-controlled flow conditions. When
suchmeasurements are modelled considering convection, diffusion, migration and reactions, the problem of de-
scribing a suitable velocity field arises immediately. Based on thework of Amatore (2001),we present aworkable
approach that avoids solving the velocity fields in multi-ion modelling. The convection is treated as a diffusion
term that becomes dominant from a certain distance from the wall (electrode). This implies that mass transfer
becomes irrelevant from that distance on and that there is a fluent transition from the diffusion layer to the
bulk of the solution. The theory is elaborated and two examples clearly show the applicability.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In many experimental techniques like Scanning Vibrating Electrode
Technique (SVET) or micro-potentiometric and micro-amperometric
probes, in situ measurements are performed in small recipients with
quiescent i.e. non-agitated electrolyte. Although quiescent, one cannot
assume that the electrolyte velocity is zero. In simulations one would
have too large diffusion layers that extend to the whole electrolyte
volume. Flow is always induced by small variations in temperature
[1,2], or concentrations (at electrodes), evaporation, small vibrations,
airmovement, etc. [3,4]. This leads after some time to a diffusion bound-
ary layer.

Also oftenmacroscopic electrochemicalmeasurements are performed
in hard to describe flow conditions except when devices are used that
provide well-controlled flow conditions such as a rotating disc (RDE) or
cylinder electrode (RCE).

So, inmany cases numerical modelling of electrochemical systems is
faced with the necessity to calculate the fluid flow [5,6] or to make ap-
proximations by defining a region of perfect electrolyte mix that is
coupled with the diffusion layers close to electrodes and in which no
flow is assumed, the so-called Nernst layers [7]. Considering distinct re-
gions is unavoidable when the electrode configurations involve extend-
ed current density distributions. Both approaches, calculating the flow
or defining subregions, implicate inaccuracies. The driving forces for
flow are scarcely known and complex to solve for, certainly when in-
duced for instance by electrode reactions in the electrolyte themselves
(natural convection). Separating the electrolyte in diffusion controlled

layers and a perfectly mixed electrolyte outside involves to define the
a single diffusion layer thickness and to couple regions in which separat-
ed equations are to be solved [8]. In this communication we present a
method that enables to reduce to a large extent the problem. The theoret-
ical developments given by Amatore [3,9] for convection–diffusion prob-
lems of one species are extended/adapted for time dependent multi-ion
transport driven by convection–diffusion–migration and homogenous
reactions. These equations in the electrolyte are coupled with non-
linear boundary conditions, e.g. Butler–Volmer, at the electrodes.

2. Theory

Themathematicalmodel of ion transport in solutions is based on the
balance equations [10]

∂ci
∂t ¼ −∇ � N

!
i þ Ri ð1Þ

with N
!
i (mol m−2 s−1) the flux of species i with concentration

ci (mol m−3) and Ri (mol m−3 s−1) the production/consumption
rate of species i due to homogenous reactions. In dilute solu-
tions the flux is

N
!
i ¼ v!ci−Di∇

!
ci−ziui Fci∇

!
U ð2Þ

with Di (m2 s−1), zi and ui = Di/RT (mol s kg−1) respectively the
diffusion constant, charge and mobility of species i in total I
species. F is the Faraday's constant, U the solution potential
(V) and v! the velocity (m s−1) of the solvent.
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The electroneutrality condition provides the additional equation to
solve for the potential U:

XI
i¼1

zici ¼ 0: ð3Þ

The local current density, obtained by summing up all ionic fluxes
multiplied by Faraday's constant and the charge number zi of each ion,
yields (considering that zi and Di are constants)

Jtot ¼ v!F
XI
i¼1

zici−F∇!
XI
i¼1

ziciDi−κ∇!U ð4Þ

in which

κ ¼
XI
i¼1

z2i ui F
2ci ð5Þ

is the electrical conductivity (S m−1). Electroneutrality involves that
convection cannot induce current density. Eq. (4) also shows that in
case all diffusion constants are equal, electroneutrality can be invoked
again such that there is also no contribution of diffusion to the total cur-
rent density and only Ohm's law remains.

Even small spontaneous convection plays an important role in elec-
trochemical systems. It is also known that due to the high Schmidt num-
ber, diffusion layers are about ten times smaller than thermal and
hydrodynamic boundary layers. They are in general situated in the lam-
inar sublayer [11]. When considering longer time ranges the effect of
microscopic motion cannot be neglected. In order to avoid all flow sim-
ulations in what follows we extend/adapt the ideas of Amatore who re-
places the convection flux by an equivalent diffusion flux [3]

Ni μconv ¼ −Dμconv∇
!
ci: ð6Þ

Remark that this flux is only acting in the opposite direction of the
concentration gradient. A micro-convection diffusion constant Dμconv is
introduced that is inherently species independent and space dependent
but assumed here isotropic1 in each point. In the viscous sublayer, the
following expression that refers directly to the hydrodynamic proper-
ties of the solution can be derived [3,9]

Dμconv ¼ D0
μconv

y
Λ

� �4 ð7Þ

with y the distance to thewall, Λ a scaling length such that Dμconv equals
D0

μconv
at y=Λ.

In view of practical use Amatore [3] elaborated the following expres-
sion (Eq. (17) in [3])

Di
μconv ¼ Dμconv ¼ D0

μconv
y
Λ

� �4 ¼ 1:5072Di
y
δ

� �4 ð8Þ

with Di the molecular diffusion of the reacting species, δ the thickness of
the equivalent linearizedNernst diffusion layer of the same reacting spe-
cies i and y the distance to the wall (electrode). This is fully justified as
those parameters are directly linked to electrochemical measurements.

A problem ariseswhen this expression is used for each species in the
ion transport Eqs. (1) to (4). We have numerically observed that Eq. (8)
couldn't be applied as such. Although the empirical approximation that
δ is independent of the species is justified [3] for experiments, it is not
valid in full multi-ion transport modelling. The total micro-convection
current density becomes non-zero because electroneutrality is not ap-
plicable anymore, as it is explained further.

When applied in full ion transport models it is mandatory to make
use of Eq. (7). For practical reasons of experimental determination,
this can be rewritten as

Dref
μconv ¼ 1:5072Dref

y
δref

 !4

ð9Þ

in which Dref and δref are respectively the molecular diffusion constant
and the Nernst diffusion layer of the reference species that is chosen to
characterize/measure the diffusion layer (e.g. H+ or oxygen). Dref and
δref are used for all species. This reveals clearly the link with expres-
sion (8): the choice of the reference species fixes the equivalent linear-
ized Nernst diffusion layer.

One can write the total flux of any species i as

N
!
itot ¼ N

!
iμconv þ N

!
i: ð10Þ

In contrast with Eq. (8), making use of expression (9), by virtue of
electroneutrality, the total current density becomes independent of
micro-convection:

Jtot ¼ −F∇!
XI
i¼1

ziDici−F∇!
XI
i¼1

ziD
ref
μconvci−κ∇!U

¼ −F
XI
i¼1

ziDi∇
!
ci−FDref

μconv∇
!XI

i¼1

zici−κ∇!U

¼ −F
XI
i¼1

ziDi∇
!
ci−κ∇!U:

ð11Þ

Remark that Dμconv acts isotropically in any direction but its value is
clearly space dependent: when close to the walls it is zero, but at dis-
tances larger than δ it becomes rapidly larger than all molecular diffu-
sion constants. All values Di+Dμconv

ref become equal such that the total
current density starts obeying Ohm's law. A fluent transition from
diffusion-controlled transport near electrodes to migration-controlled
transport in the bulk is obtained. This is also fully equivalent with
what is found by Amatore et al. [3]. Outside the thus obtained diffusion
layer other flow phenomenawith larger recirculationsmight take place
but at the end the effect remains the same: the electrolyte is perfectly
mixed and justifies, for instance, the validity of the calibration equations
used for SVET [12]. For that reason we believe that the approach might
be suitable too for moderately agitated solutions provided that the
transport of species tangential to electrodes is small with respect to
one normal to their surfaces.

3. Calculations

Two examples show the validity of the developed theory.
Thefirst example consists of the polarisation of a 1.2mmdiameter Pt

disc in 10mMK4Fe(CN)6 in 1MKCl (pH6), identical to the case presented
by Amatore et al. [3] but solved nownumerically with amulti-ionmodel.
Polarisation data given by Van Parys et al. [13] are used and the diffusiv-
ities of species are as follows: DHþ ¼ 9:31 � 10−9 m2 s−1 , DOH− ¼ 5:26

�10−9 m2 s−1 [10],DKþ ¼ 1:52 � 10−9 m2 s−1,DCl− ¼ 1:72 � 10−9 m2

s−1 , DFe CNð Þ4−6 ¼ 5:70 � 10−10 m2s−1 and DFe CNð Þ3−6 ¼ 6:00 � 10−10m2s−1

[3]. The initial bulk concentrations are cKþ ¼ 1:04 M, cCl− ¼ 1 M, cHþ ¼
10−6 M, cOH− ¼ 10−8 M, cFe CNð Þ4−6 ¼ 10 mM and cFe CNð Þ3−6 ¼ 0 M [3].

The second example deals with hydrogen evolution at an imposed
current density of 13 Am−2 on an identical Pt disc in a 0.005 M NaCl
(pH 6) solution, also a simple system that is often used to calibrate
SVET devices. Polarisation data were imposed such that a constant cur-
rent density distribution is obtained on the electrode. The diffusivities of
species are: DHþ ¼ 9:31 � 10−9 m2 s−1 , DOH− ¼ 5:26 � 10−9 m2 s−1

1 In a more generalized theory the micro-turbulence can be anisotropic (Dx μconv ≠ Dy

μconv≠Dz μconv).
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