FI SEVIER

Contents lists available at ScienceDirect

### **Electrochemistry Communications**

journal homepage: www.elsevier.com/locate/elecom



#### Short communication

# Cubic spinel cobalt oxide/multi-walled carbon nanotube composites as an efficient bifunctionalelectrocatalyst for oxygen reaction



Yulong Liu, Drew C. Higgins, Jason Wu, Michael Fowler, Zhongwei Chen\*

Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

#### ARTICLE INFO

Article history: Received 24 April 2013 Received in revised form 28 May 2013 Accepted 29 May 2013 Available online 4 June 2013

Keywords:
Oxygen reaction
Cubic spinel cobalt oxide
Carbon nanotubes
Bifunctionalelectrocatalyst
Performance

#### ABSTRACT

A facile hydrothermal route has been adopted to fabricate cubic spinel cobalt oxide/multi-walled carbon nanotube composite using acid-functionalized carbon nanotubes as structure directing/oxidizing agents. The composite material demonstrated excellent bifunctionality before and after long periods of cyclic voltammetry cycling. After cycling, the oxygen reduction current density of the composite shows about 4, 34 and 3 times improvements in comparison to multi-walled carbon nanotube, cubic spinel cobalt oxide and their physical mixture, respectively. The oxygen evolution current density of the composite was 49% higher than the physical mixture and even greater than each component alone after 500 CV cycles. The cause of high performance is presumably contributed to the synergistic coupling effects between the multi-walled carbon nanotubes and the cubic spinel cobalt oxide.

© 2013 Elsevier B.V. All rights reserved.

#### 1. Introduction

Rechargeable zinc–air batteries have attracted enormous attention as alternative energy sources owing to their advantages over traditional batteries in aspects of low-cost, environmental benignity and extremely high energy density [1]. Nevertheless, the most critical issue that hampers large-scale implementations of metal–air batteries is the sluggish kinetics of oxygen evolution and reduction reactions occurring during charge and discharge of a metal–air battery. Aiming to overcome this, scientists have devoted considerable efforts for developing low-cost and efficient bifunctionalelectrocatalysts that are capable of catalyzing both oxygen reduction reactions (ORRs) and oxygen evolution reactions (OERs). Currently, to reach satisfactory performance, precious metal-based bifunctional materials such as Pt-IrO<sub>2</sub> and PtIrRu are the best choices [2,3]. Due to the high cost and scarcity of precious metals, it is challenging but highly desirable to develop low-cost and efficient bifunctionalelectrocatalysts.

Spinels are potential candidates as low-cost electrocatalysts for both ORRs and OERs in alkaline environments [4,5]. This is owing to the more tolerant environment and facile reaction kinetics in comparison to acidic electrolytes, allowing for a broader selection of oxygen catalysts [6], especially for non-precious bifunctional catalysts such as  $\rm Co_3O_4$ . However, very little has been reported to date about utilizing  $\rm Co_3O_4$  as bifunctional electrocatalyst components for metal–air batteries. Liang et al. [7] brought insights into the synergistic coupling between  $\rm Co_3O_4$  and graphene, and demonstrated

excellent bifunctionality and stability of the composite material. Inspired by his idea, coupling Co<sub>3</sub>O<sub>4</sub> and multi-walled carbon nanotubes (MWCNTs) could also display bifunctionality and stability. Furthermore, it is well believed that the electrochemical activities of nanostructured catalysts are closely related to their morphologies [8]. Different shaped Co<sub>3</sub>O<sub>4</sub> such as nanocubes, nanoplatelets, and so forth has been synthesized with a variety of methods [9,10]. While the impact of morphology on the bifunctionality of Co<sub>3</sub>O<sub>4</sub> microspheres for lithium-air batteries has been demonstrates by Yang et al. [11], the bifunctional capabilities of morphology controlled  $Co_3O_4$  composited with carbon supports has never been reported. As a result, evaluating the ORR/OER activities of cubic Co<sub>3</sub>O<sub>4</sub> (cCo<sub>3</sub>O<sub>4</sub>) and its MWCNT composite material will be very intriguing and is worth studying, although no techniques have previously been reported to synthesize morphology controlled cubic cCo3O4 directly chemically attached to MWCNTs. Herein, we report a highly active and stable bifunctionalelectrocatalyst synthesized via a facile hydrothermal process. To the best of our knowledge, this is the first reported cubic Co<sub>3</sub>O<sub>4</sub> and MWCNT composite material (cCo<sub>3</sub>O<sub>4</sub>/MWCNT) with outstanding bifunctionality and stability.

#### 2. Experimental procedure

#### 2.1. Preparation of cCo<sub>3</sub>O<sub>4</sub> and cCo<sub>3</sub>O<sub>4</sub>/MWCNT

The  $cCo_3O_4$  was prepared via the synthesis method of Feng et al. [12]. The  $cCo_3O_4/MWCNT$  was prepared through a hydrothermal method with acid-functionalized MWCNT and  $Co(CH_3COO)_2 \cdot 4H_2O$  (Reagent grade, Sigma-Aldrich) as starting materials. MWCNTs were

<sup>\*</sup> Corresponding author. Tel.: +1 519 888 4567x38664; fax: +1 519 746 4979. E-mail address: zhwchen@uwaterloo.ca (Z. Chen).

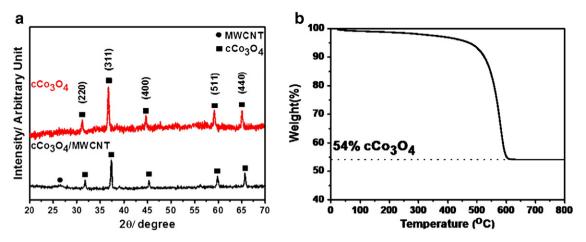



Fig. 1. (a) XRD patterns of cCo<sub>3</sub>O<sub>4</sub> and cCo<sub>3</sub>O<sub>4</sub>/MWCNT and (b) TGA of cCo<sub>3</sub>O<sub>4</sub>/MWCNT.

purchased from MER Corporation., USA. The MWCNTs were treated in 6 M nitric acid at 110 °C for 5 h followed by washing with copious amount water and dried in the oven for further uses. Typically, 45 mg of  $\text{Co}(\text{CH}_3\text{COO})_2 \cdot 4\text{H}_2\text{O}$  was dissolved in 10 mL of ultrapure water, into which ammonia was added to adjust the pH of solution

to 8. Afterwards, 15 mg of the acid-treated MWCNT was dispersed in the above solution by stirring and followed by ultrasonication. The solution was then transferred into an autoclave for 5 h reaction at 150  $^{\circ}$ C. The resulting black product was collected by centrifuge and dried overnight.

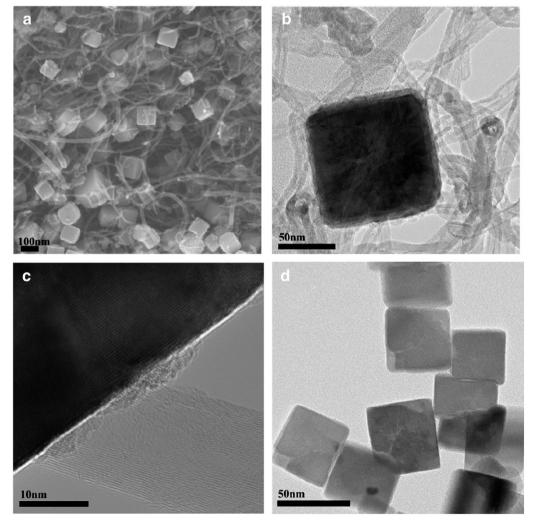



Fig. 2. SEM (a) and TEM (b) images of cCo<sub>3</sub>O<sub>4</sub>/MWCNT; HRTEM images of cCo<sub>3</sub>O<sub>4</sub>/MWCNT; and (c) TEM image of pure cCo<sub>3</sub>O<sub>4</sub> (d).

#### Download English Version:

## https://daneshyari.com/en/article/6601529

Download Persian Version:

https://daneshyari.com/article/6601529

Daneshyari.com