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a b s t r a c t

The effect of bulk cargo materials - iron ore and coal e on the corrosion of cargo hulls in carriers was
investigated using electrochemical noise. Two reference corrosion systems were set up with the steel
samples in contact with moist silica sand and immersed in NaCl solution, which generated localised
corrosion and general corrosion, respectively. The electrochemical noise was measured and recurrence
quantification analysis was used to extract feature variables. A random forest model using these feature
variables as predictors was able to discriminate between the two reference corrosion systems. This
model was successfully applied to the assessment of carbon steel corrosion in iron ore and coal. The
results predicted by the model were in agreement with visual and microscopic observations of the
relevant corroded steel samples. This work provides a novel analytical approach to future on-line
monitoring of carrier structures in contact with bulk cargoes.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Steel carriers are commonly used for transportation of cargoes,
such as coal and iron ore [1,2]. Corrosion has been identified as one
of the major causes of ship structural failures [3e5]. Fortunately,
with adequate maintenance and proper protection of the steel
structures, the impact of corrosion could be controlled. However,
field observations revealed that the maintenance practices were
not always sufficient and some areas, such as the lower parts of the
bulk coal and iron ore carriers, might not be suitable for the
implementation of protection measures [3]. Therefore, an
enhanced corrosion monitoring program is called for to guide
efficient inspections and timely maintenance plans.

Corrosion can occur in different forms at different positions of
the cargo hold of the bulk carrier. The overall thickness of the steel
structure could be considerably reduced due to continuous general
corrosion. In comparison, localized corrosion may result in little
mass loss, but could lead to decrease of the strength of the steel
structure and cause crack or penetration of the steel structure
without pre-warning [6,7]. Real-time monitoring of the corrosion

processes could increase the chance of capturing the fault condi-
tions of the steel structures and reduce unnecessary inspections,
thereby decreasing the maintenance cost.

Previous experimental studies on corrosion of steels by bulk
cargoes, like coal and iron ore, mainly focused on the factors that
influenced general corrosion rates, including particle size, quantity
of moisture, pH level as well as chloride and sulphate concentra-
tions in the water phase of the ores [8e10]. To date, little attention
has been paid to the real-time monitoring of the corrosion process
at steels in contact with bulk cargoes and no studies have been
carried out on the identification of different corrosion types.

There are a number of corrosion monitoring techniques that are
frequently used in industries to assist the development and
implementation of inspection and maintenance programs, such as
electrical resistance (ER), linear polarisation resistance (LPR) and
electrochemical impedance spectroscopy (EIS). Although these
techniques could provide near real-time corrosion rate related to
general corrosion process, they are not particularly useful in
detecting localised corrosion events [11,12].

It is widely recognized that electrochemical noise (EN) gener-
ated from corrosionprocesses bears valuable information regarding
the underlying forms of corrosion [13e16]. Localised corrosion
events can be revealed by indicators derived from the collected EN* Corresponding author.
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signals with appropriate analytical approaches. Over the past few
decades, a variety of parameters derived from the EN data have
been proposed for corrosion monitoring and corrosion type iden-
tification, e.g. localisation index or pitting factor [17], characteristic
charge and frequency [18], roll-off slope of the power spectral
density plot [19], correlation dimension [20], energy distribution
plot (EDP) [21], etc. Nevertheless, contradictory results have been
observed and no agreement has been reached as to the optimal
measures.

More recently, recurrence quantification analysis (RQA) has
been employed to interpret EN data [22e24]. It was demonstrated
that feature variables extracted from EN data by use of RQA were
capable of capturing the characteristics of different types of
corrosion processes. Furthermore, in our recent studies [25e27],
the combination of RQA and advanced machine learning methods
was shown to be capable of distinguishing localised corrosion from
general corrosion in-situ.

Specifically, the EN data segment was first converted to a so-
called recurrence plot, from which twelve variables were then
extracted. A recurrence plot is in essence a graphical representation
of a square matrix, which is commonly expressed as Ri;j ¼ Hðε���xi � xj

��Þ. In our studies, Ri;j represents the ði; jÞth point in the
recurrence plot, ε is a predefined threshold value, xi; xj are the
measured EN values at times i and j, and k$k refers to the Euclidean
distance between this pair of data points. Hð$Þ represents the
Heaviside function, which gives the value of one, if the distance
between xi and xj falls within the threshold. Otherwise, it is zero.
The quantification of the recurrence plots is termed as recurrence
quantification analysis (RQA), by which various feature variables
can be derived.

In previous investigations [25,26], twelve variables extracted by
RQA method, as shown in Table 1, were used as predictors of a
random forest (RF) model to distinguish between uniform, pitting
and passivation processes of carbon steel in NaCl solution,
NaHCO3 þ NaCl solution, and NaHCO3 solution respectively.
Furthermore, the RF model was capable of identifying pitting
corrosion of carbon steel beneath sand deposit and general corro-
sion in CO2-saturated brine [27].

The present study is an extended application of the methodol-
ogies and the data analytical procedures proposed earlier [25e27].
The objective is to identify the types of corrosion process that take
place at carbon steel exposed to the two bulk cargoes investigated.
Two other corrosive systems, which are expected to result in gen-
eral and localized corrosion, are used to obtain electrochemical
noise data for development of the random forest model. Specif-
ically, carbon steel immersed in NaCl solution will be used for
general corrosion assessment, and silica sand moist with NaCl so-
lution is used for localized corrosion assessment. Deposits of silica
sand at carbon steel have been previously shown to cause pitting
[28]. A random forest model will be developed based on recurrence
quantification analysis of the EN data generated from these two
reference corrosion systems to discriminate between the two types
of corrosion. Once established, this model will be applied to iden-
tify the corrosion types of specimens buried in iron ore and coal
cargoes on the basis of associated EN recordings. This could be
accomplished in real time, without having to take the specimens
out. It is expected that this work could offer an additional analytical
method for corrosion monitoring of bulk cargo carriers.

2. Experimental work

2.1. Materials

Carbon steel specimens (grade 1030) with chemical composi-
tions of (wt.%): C (0.37), Si (0.282), Mn (0.80), P (0.012), S (0.001), Cr
(0.089), Ni (0.012), Mo (0.004), Sn (0.004), Al (0.01), and Fe (bal-
ance) were used in this study. Two rectangular specimens with the
same dimensions of 1.5 cm� 1.4 cm� 0.5 cm were soldered with a
conducting wire for electrical connection and then electrocoated
using Powercron 6000CX. Afterwards, the two specimens were
mounted together in epoxy resin (Epofix), leaving approximately
2 cm2 for each specimen as a working surface. This assembly,
named as EN electrode, was used as working electrode in the
electrochemical noise tests. Prior to EN tests, the electrode was
ground on silicon carbide paper up to 240 grit, followed by rinsing
with ultrapure water and ethanol and finally drying with nitrogen.

Table 1
Recurrence quantification variables.

Number RQA variable Equation

1 Recurrence rate
RR ¼ 1

N2

XN

i;j¼1
Ri;jðεÞ

2 Determinism
DET ¼

PN
l¼lmin

l PðlÞ
PN

i;jRi;jðεÞ
; lmin ¼ 2PðlÞ e Histogram of the diagonal lines* of length l.

3 Averaged diagonal length
Lmean ¼

PN
l¼lmin

lPðlÞ
PN

l¼lmin
PðlÞ

4 Length of longest diagonal line Lmax ¼ maxðfli; i ¼ 1;2;…NlgÞNl� Total number of diagonal lines.
5 Entropy of diagonal length

(ENTR1)
ENTR1 ¼ �PN

l¼lmin
pðlÞ lnpðlÞpðlÞ e Probability distribution of diagonal lines.

6 Laminarity
LAM ¼

PN
v¼vmin

vPðvÞ
PN

v¼1vPðvÞ
; vmin ¼ 2PðvÞ e Histogram of vertical lines** of length v.

7 Trapping time
TT ¼

PN
v¼vminvPðvÞPN
v¼vmin

PðvÞ
8 Length of longest vertical line Vmax ¼ maxðfvi; i ¼ 1; 2; …; NvgÞNv e Total number of vertical lines.
9 Recurrence times of 1st type fRT1ðiÞ ¼ ti � ti�1ji ¼ 1;2; …g
10 Recurrence times of 2nd type fRT2ðiÞ ¼ t

0
i � t

0
i�1

��i ¼ 1;2; …g
11 Entropy of recurrence period density (ENTR2)

ENTR2 ¼ � 1
lnðtmaxÞ$

Xtmax

t¼1
PðtÞ$lnðPðtÞÞPðtÞ ¼ RðtÞ=Ptmax

k¼1RðkÞ e Recurrence time probability density.

RðtÞ e The histogram of recurrence times.
tmax e The maximum recurrence time.

12 Transitivity
TRANS ¼

PN
i;j;k¼1Ri;j$Rj;k$Rk;iPN

i;j;k¼1Ri;j$Rk;i
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