Accepted Manuscript

Synthesis of sulfur-rich \mbox{MoS}_2 nanoflowers for enhanced hydrogen evolution reaction performance

Zhongcheng Li, Jiaojiao Ma, Ying Zhou, Zhengmao Yin, Yubao Tang, Yinxue Ma, Debao Wang

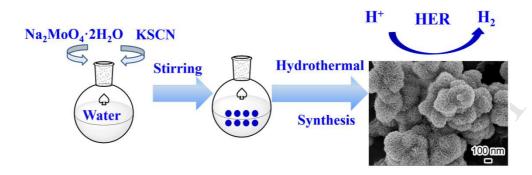
PII: S0013-4686(18)31423-3

DOI: 10.1016/j.electacta.2018.06.135

Reference: EA 32128

To appear in: Electrochimica Acta

Received Date: 1 February 2018


Revised Date: 17 April 2018 Accepted Date: 20 June 2018

Please cite this article as: Z. Li, J. Ma, Y. Zhou, Z. Yin, Y. Tang, Y. Ma, D. Wang, Synthesis of sulfur-rich MoS₂ nanoflowers for enhanced hydrogen evolution reaction performance, *Electrochimica Acta* (2018), doi: 10.1016/j.electacta.2018.06.135.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical Abstract

The MoS_2 nanoflowers with 210-470 nm were fabricated by a facile hydrothermal method, showing the enhanced HER activity due to the exposed unsaturated S atoms.

Download English Version:

https://daneshyari.com/en/article/6601952

Download Persian Version:

https://daneshyari.com/article/6601952

<u>Daneshyari.com</u>