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a b s t r a c t

Heterogeneity of media distribution in a packed tube plays an important role on scalar dispersion by
enhancing the transverse non-uniformity of the flow velocity. Presented in this paper is a theoretical
analysis for an instantaneous release of scalar substance into a fully developed flow through a long tube
of two zones distinctively packed with porous media. The velocity distribution of the flow through the
tube is derived, with the known solution for a single zone tube flow included as a special case. Mei’s per-
turbation analysis for scalar dispersion in a single phase fluid flow is rigorously generalized for the two-
zone case of a tube flow to develop a dispersion model by averaging the concentration transport equation.
Corresponding dispersivity is analytically determined, and Taylor’s well-known result for a single-zone
tube flow is recovered by setting corresponding parameters as unity. The enhancement of the dispersion
by the heterogeneity and the dependence of the enhanced dispersion on the tube radius are illustrated
and characterized by relevant dimensionless parameters.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Taylor dispersion [1] refers to the process that scalar substances
spread longitudinally by a diffusion-like process in a confined
shearing flow under combined action of lateral diffusion and flow
speed non-uniformity, as intrinsic in a variety of flows including
those in rivers, estuaries, blood vessels and lung tracheas [2–7].

The effect of Taylor dispersion in porous media can be essential
in a variety of practical applications such as the extraction of en-
ergy from geothermal regions, biochemical separation or purifica-
tion of mixtures, biomechanical practices of cartilage in synovial
joints [8], improving efficiency of conventional oil recovery by
applying Enhanced Oil Recovery processes [9], and environmental
issues including environmental risk assessment, ecological restora-
tion and wastewater treatment engineering associated with wet-
lands [10,11].

Flow and dispersion through packed glass beads have been
intensively measured by nuclear magnetic resonance (NMR) spec-
trometer experiments and conventional column breakthrough
experiments [12]. Maier et al. simulated the enhanced dispersion
in sphere-packed tube in the pore scale [13] with fluid velocity
field calculated by lattice-Boltzmann method [14] and tracer mo-
tion captured by a random-walk particle-tracking algorithm. The
time scale needed for the dispersion to attain its asymptotic rate
has been characterized as the square of the packed tube radius over
the bulk transverse dispersion rate [15]. Experiments with differ-

ent tube inner diameters were conducted to confirm the depen-
dence of dispersivity on the tube radius [16].

Different from the approaches focused on the pore-scale pro-
cesses, Chen and Zeng [17] analytically studied Taylor dispersion
in a packed tube at the holistic scale, on the basis of phase average.
Complex as transport in porous media, it is hard to figure out the
details of the real flow and concentration transport at the pore
scale associated with the unknown interface between fluid in the
irregular vicinity and solid frame. By the operation of phase aver-
age, discontinuity caused by the interface of fluid and solid frame
could be smeared out and the resulted superficial field [18,19] is
a continuous distribution in the entire domain of concern. Thus
the term Taylor dispersion refers to the macroscopic phenomenon
due to the existence of velocity gradient in the superficial flow. The
superficial analysis has been extended to explore concentration
dispersion in wetland flows [2,20–24].

While all the experimental, numerical and analytical researches
have been performed on the dispersion in a uniformly packed tube,
the effect of inhomogeneities in porous media remains to be
assessed.

Heterogeneity of media distribution can play an important role
on scalar dispersion by enhancing the non-uniformity of the flow
velocity. For example, for scalar dispersion associated with blood
flows in arteries the condition of atherosclerosis can be illustrated
by the model of a two-zone packed tube. Although under certain
conditions blood displays some viscoelastic properties, it is com-
monly believed that the influence of the non-Newtonian property
is meager in large arteries where the shear rate is high [25].
Atherosclerosis is a disease caused by different factors, among
which the transport and accumulation of atherogenic low-density
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lipoproteins (LDL) from flowing blood to the wall of an artery are
universally acknowledged [25–27]. The scalar transport in the ar-
tery of both single-zone and two-zones is of considerable interest.

For scalar transport in a two-zone packed tube, presented in
this work is an analytical study on the flow profile and the longitu-
dinal evolution of the cross-sectional mean concentration under
Taylor dispersion. The specific objectives of this paper are: (I) to
give a velocity distribution of superficial flow through the two-
zone tube; (II) to determine the Taylor dispersivity in the two-zone
tube by perturbation analysis; (III) to analyze the enhancement of
the dispersion by both the global parameter and relative parame-
ters; (IV) to discuss the dependence of dispersivity on the tube ra-
dius in the two-zone packed tube and (V) to illustrate the variation
of dimensionless concentration with different parameters.

2. Momentum and concentration transport

Once there is an instantaneous release of scalar substance into a
flow through a long tube, the evolution of the concentration cloud
is characterized by two stages on the whole. At the very beginning
of the release, there is a large longitudinal concentration gradient
across the tube section, and the radial concentration difference
caused by the radial variation of the longitudinal velocity cannot
be balanced by the radial diffusion driven by the radial concentra-
tion gradient. The cross-sectional mean concentration thus forms a
longitudinal skewed distribution. As time goes by, the longitudinal
concentration gradient is reduced, the radial concentration differ-
ence gradually turns to be balanced by the radial diffusion, then
the longitudinal distribution of the cross-sectional mean concen-
tration tends to a normal distribution. Under such circumstances,

the centroid of the cloud moves at the cross-sectional mean veloc-
ity of the flow, and the cloud disperses longitudinally by a virtual
diffusion coefficient [7,28]. The latter stage of the evolution is
known as the Taylor dispersion.

For a typical flow in the packed tube, basic equations for
momentum and mass transport can be adopted generally at the
phase average scale as [2,18,29]
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Like viscosity for momentum transfer and diffusivity for concentra-
tion transfer valid for the description of the single phase fluid flow
at the microscopic passage scale, momentum and concentration
dispersivities are properties valid for the description of superficial
flow at the phase-average scale out of the operation of phase aver-
age to smear out the discontinuity between the two phases of the
ambient fluid and the porous media. The expression of the momen-
tum equation for the superficial flow through porous media is out of
a combination of the Navier–Stokes equation for single phase fluid
flows and Darcy’s law for sweeping flows in porous media plus a
term of second-order derivative to account for momentum disper-
sion. Similarly, the equation for concentration transport is out of a
combination of an advective–diffusive equation and a concentration
dispersion law.

Consider scalar transport in a fully-developed unidirectional
flow through a two-zone packed tube with length much longer
than the radius R = a1 + a2, in a Cylindrical coordinate system with
longitudinal x-axis aligned with the flow direction, radial r-axis,

Nomenclature

ai radius of zone 1 (i = 1) and thickness of zone 2 (i = 2)
b ratio of radius of zone 1 to that of the entire tube
C concentration
Ci concentration in zone i (i = 1,2)
CðjÞi jth order concentration (j = 0,1,2) in zone i (i = 1,2)
Cb an integral constant
C⁄ dimensionless concentration
D enhancement of Taylor dispersivity
DR radius-dependent dispersivity
Ds Taylor dispersivity for the single-zone tube case
DT Taylor dispersivity
F shear factor
Fi shear factor in zone i (i = 1,2)
f any property
fi any property in zone i (i = 1,2)
K concentration dispersivity tensor
Ki concentration dispersivity in zone i (i = 1,2)
L momentum dispersivity tensor
Li momentum dispersivity in zone i (i = 1,2)
M square root of the effective viscosity of the porous med-

ia in zone 2 over that in zone 1
N square root of the viscous friction of the porous media in

zone 2 over that in zone 1
P pressure
Pei Peclet number in zone i (i = 1,2)
Q mass
R radius of the tube
r radial coordinate
ri radial coordinate for zone i (i = 1,2)
Ti convection time scale (i = 1) and diffusion time scale

(i = 2)

t time
ti different time coordinate for the expansion (i = 0,1)
t⁄ dimensionless time
U velocity vector
ui longitudinal velocity in zone i (i = 1,2)
uc characteristic velocity
uB dimensionless velocity at the interface of two zones
x longitudinal coordinate
xi longitudinal coordinate for zone i (i = 1,2)
X characteristic length of the concentration cloud

Greek symbols
a dimensionless parameter
d Dirac delta function
e small parameter for the multiple scale expansion
f dimensionless longitudinally moving coordinate
g dimensionless radial coordinate
j tortuosity
k concentration diffusivity
l dynamic viscosity
n dimensionless longitudinal coordinate
q density
s dimensionless time
u porosity
ui porosity in zone i (i = 1,2)
W dimensionless longitudinal velocity
Wi dimensionless longitudinal velocity in zone i (i = 1,2)
wi dimensionless longitudinal velocity in zone i (i = 1,2),

nondimensionalized by the averaged velocity
wui dividing wi by ui (i = 1,2)
w0ui dimensionless velocity deviation in zone i (i = 1,2)
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