Accepted Manuscript

Molybdenum disulfide nanosheets embedded in hollow nitrogen-doped carbon spheres for efficient lithium/sodium storage with enhanced electrochemical kinetics

Penggian Guo, Kai Sun, Deguan Liu, Pu Cheng, Mingzhi Lv, Qiming Liu, Deyan He

PII: S0013-4686(18)31429-4

DOI: 10.1016/j.electacta.2018.06.141

Reference: EA 32134

To appear in: Electrochimica Acta

Received Date: 28 March 2018
Revised Date: 26 May 2018
Accepted Date: 22 June 2018

Please cite this article as: P. Guo, K. Sun, D. Liu, P. Cheng, M. Lv, Q. Liu, D. He, Molybdenum disulfide nanosheets embedded in hollow nitrogen-doped carbon spheres for efficient lithium/sodium storage with enhanced electrochemical kinetics, *Electrochimica Acta* (2018), doi: 10.1016/j.electacta.2018.06.141.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Molybdenum disulfide nanosheets embedded in hollow nitrogen-doped

carbon spheres for efficient lithium/sodium storage with enhanced

electrochemical kinetics

Pengqian Guo, Kai Sun, Dequan Liu, Pu Cheng, Mingzhi Lv, Qiming Liu, and Deyan He*

School of Physical Science and Technology, and Key Laboratory for Magnetism and Magnetic

Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China

ABSTRACT

Molybdenum disulfide nanosheets@hollow nitrogen-doped carbon (MoS₂@NC) spheres were

prepared via a facile synthesis and investigated as a host material for ion storages. When used in

lithium ion batteries (LIBs) or sodium ion batteries (SIBs), the MoS₂@NC spheres electrodes

exhibited excellent electrochemical performances. A high capacity of 1386 mAh g⁻¹ after 100

cycles was obtained at a current density of 200 mA g⁻¹ for LIBs. As for SIBs, a capacity of 330

mAh g⁻¹ was retained after 400 cycles at 1000 mA g⁻¹. The remarkable ion storage performances

can be attributed to the hierarchical architecture of the MoS₂@NC spheres, which not only

supply abundant active sites and efficient electron and ion pathways, but also alleviate the

volume change of the active MoS₂ material. Meanwhile, synergistic effect of the heterogeneous

components, interfacial ion storages, nitrogen doping and induced defects are responsible for

high capacities of the MoS₂@NC electrodes. And the electrodes exhibited enhanced

electrochemical kinetics due to the significantly improved electrical conductivity and the large

specific area of the MoS₂@NC spheres.

* Corresponding author.

E-mail address: hedy@lzu.edu.cn (D. He)

Download English Version:

https://daneshyari.com/en/article/6602023

Download Persian Version:

https://daneshyari.com/article/6602023

<u>Daneshyari.com</u>