
Application of residual correction method to laser heating process

Huan-Sen Peng, Chieh-Li Chen ⇑, Guo-Sin Li
Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 70101, Taiwan

a r t i c l e i n f o

Article history:
Received 22 March 2011
Available online 7 October 2011

Keywords:
Residual correction method
Laser heating
Heat transfer

a b s t r a c t

In this study, the residual correction method is employed to predict the temperature distribution during
laser heating process. The energy transfer induced by laser irradiation in the solid is described by Fou-
rier’s law of conduction with an energy source modeled by Beer’s law. The approximate solution of tem-
perature field is obtained by residual correction. Using the residual correction method, the precise
average value of upper and lower approximate solutions is obtained and the error range between the ana-
lytical solution and the numerical solution can be analyzed. The results reveal that this method is an
effective numerical method with satisfactory accuracy.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The high-power laser beam has many important industrial and
medical applications which include drilling, welding, heating,
non-contact measurement, sensing and surgical treatment, etc.
Laser heating can be used to heat a solid substrate of different
material by regulating its process parameters. The physical model
of laser radiation absorption was introduced by Ready [1] in
1965, where the analytical solution for a high-power pulse laser
heating process of specified shapes absorbed at opaque surfaces
was obtained. Their results are also in agreement with the experi-
mental data. Diniz Neto and Lima [2] developed a numerical proce-
dure to investigate the transient behavior of the temperature
distribution in a solid heated by short powerful laser pulses. They
used the finite difference method to compute the temperature
distributions or any desired thermal profiles in any space or time
variables. The results were presented and discussed from the point
of view of an application of the model to metals heated with a
pulsed Nd-YAG laser. Rozzi et al. [3] presented experimental and
three-dimension numerical predictions for laser heating process
to investigate the thermal response of a rotating silicon nitride
workpiece heated by a translating CO2 laser. The results appraise
the probability of the LAM (laser-assisted machining) process and
provided a good understanding of laser heating phenomena. In
2001, Yilbas and Kalyon [4] investigated the temperature distribu-
tion due to repetitive laser pulse heating with a convective bound-
ary condition at the surface. They utilized Laplace transformation
method to obtain the analytical solution for the heat transfer equa-
tion. The effects of the pulse parameter and the Biot number on the
resulting temperature profiles during repetitive laser pulse heating

are examined. The effect of Biot number on surface temperature
profiles becomes obvious for Bi P 2 � 10�2. Besides, the results re-
vealed that the temperature difference between the first and sec-
ond peak temperatures in the temperature curve is never zero for
all laser pulse parameter and Biot number. They concluded that a
constant surface temperature is improbable to achieved using
repetitive laser pulse heating. He et al. [5] employed the Laplace
transform to obtain an analytical solution for the temperature field
with convective boundary condition. Moreover, the experiment
data obtained by the thermo-camera are used to validate the ana-
lytical solution. Their results revealed the influences of Biot number
and dimensionless energy absorption at surface in temperature
profiles. Peng and Chen [6] utilized the differential transformation
method to predict the laser heating problem. The influence of
convective boundary and dimensionless energy absorption at the
surface are examined. This study provided an effective and efficient
method to analyze the heat transfer problem. The analytical
solution for repetitive laser pulse heating of a solid substrate was
carried out by Kalyon and Yilbas [7] in 2006. The Laplace transfor-
mation method was utilized to obtain a closed form solution for the
temperature rise inside the material. Their results demonstrated
that the rise in temperature due to a single pulse with double inten-
sity is higher than that corresponding to consecutive two pulses
without having the cooling period between them. Lo [8] investi-
gated the heat transfer in a thin film exposed to ultrashort-pulsed
laser by using the hybrid differential transform/finite-difference
method. The governing equations were transformed from the time
domain into the spectrum domain using the differential transform
method and then discretized in the space domain by the finite-
difference method. Then, a recursive procedure was employed to
solve the transformed equations and obtain the numerical
solutions. The study indicated that although the electron/lattice
temperature is at equilibrium at only a couple hundred degrees,
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the maximum electron temperature can reach as high as several
thousand degrees. The laser heating of steel and formation of a melt
pool in the laser-heated surface were studied numerically by Shuja
and Yilbas [9]. In the study, the enthalpy-porosity method was used
to analyze the phase change problem. They predicted the tempera-
ture distribution and the velocity field in the melt layer. Tseng and
Tsai [10] used the dual-phase-lag model to analyze the microscale
heat transfer in metallic films. The diffusion and the CV wave mod-
els were also analyzed by using different values of the phase lags in
the DPL model. Results showed that the dual-phase-lag model is
more accurate by comparing with experiments.

In order to realize the effect of laser heating process, the math-
ematical model must be constructed. It usually combines with
nonlinear differential equations and boundary conditions. In the
real world, it is difficult to find the exact solution of nonlinear dif-
ferential equation. It is only possible to utilize some numerical
schemes to find out the approximate solution and the error range.
residual correction method is one of them.

The past researches show that error between approximate solu-
tion and exact solution usually decreases with an increasing grid
points or numbers of approximate function. These methods require
more memory space and calculation time. However, it is still unable
to determine the accuracy of approximate solution completely.
Hence, another theory based on maximum principle of differential
equations problem (Protter and Weinberger [11]) is utilized to find
the upper and lower approximate solutions and to estimate the er-
ror range between approximate solution and exact solution.

However, this kind of method includes a mathematical pro-
gramming problem of inequalities. It requires complex and heavy
load of calculation. In recent years, some scholars have made an ef-
fort to simplify the calculating procedure. Wang [12,13], Cheng
et al. [14] and Wang [15] utilized the spline approximation to dis-
cretize the differential equations into the mathematical program-
ming problems. Then, based on the residual correction concept,
the inequality constraint mathematical programming problems
can be converted into the simple iterative equations. The results
showed that the efficiency of obtaining solutions is raised signifi-
cantly. Tang et al. [16] extended the previous studies. They applied
the finite difference to discretize the equation, converting the dif-
ferential equation into the mathematical programming problem.
And then incorporating the residual correction method to obtain
the upper and lower approximate solutions. Their study showed
that the methodology of incorporating the residual correction
method into the nonlinear iterative procedure of the finite differ-
ence can make it easier and faster to obtain the approximation
solutions.

In this study, a technique called the residual correction method
based on maximum principles in differential equations is utilized

to find out the upper and lower approximate solution of laser heat-
ing process. The influences of convective boundary and laser pulse
parameters are examined.

2. Maximum principles for differential equations

The concept of maximum principle is utilized to establish the
residual of differential equations to obtain the upper and lower
approximate solutions. The first, suppose that the differential
equation in the form as below:

R~hðxÞ ¼ Fðx; ~u; ~ux; ~uxxÞ � f ðxÞ inD ð1Þ

boundary

R~hðxÞ ¼ gðxÞ � ~hðxÞ on@D ð2Þ

where R~hðxÞ is known as the residual of the differential equation. On
assumption that the approximate solutions have definition in the
calculation domain and are continuous till second derivatives, if

@R
@h
� 0 inD ð3Þ

Then, when the following equation holds:

R
h
^ðxÞ � RhðxÞ ¼ 0 � R

h
_ðxÞ onD [ @D ð4Þ

The approximate solutions will have the following relation with the
exact solution:

h
^

ðxÞ � hðxÞ � h
_

ðxÞ onD [ @D ð5Þ

where h
^

ðxÞ and h
_

ðxÞ are known as the lower and upper approximate
solutions of the exact solution h(x), respectively. And differential
equation with such relations is considered as monotonic.

3. Residual correction steps

Using the finite difference method to discretize and reformulate
the residual relation into the following expression:

Rr;i;j;kðt; x; y; zÞ ¼ � L½h�nþ1
r;i;j;k þ N½h�nr;i;j;k

� �
þ fr;i;j;k ð6Þ

where L is the linear operator and N is the nonlinear operator, the
superscript n is the iterative times, and the subscript r, i, j, k is
the serial number of the grid points after discretizing.

Then, transfer the expression into an iterative equation with
residual correction to avoid complex calculations:

� L½h�nþ1
r;i;j;k þ N½h�nr;i;j;k

� �
þ fr;i;j;k ¼

max
min

DRn
r;i;j;kðt; x; y; zÞ

� �
ð7Þ

Nomenclature

Bi Biot number
Emax the maximum possible error
h convective heat transfer coefficient (W/m2K)
I0 laser peak power intensity (W)
k conductivity (W/mK)
L linear operator
M dimensionless energy absorption at surface
N nonlinear operator
Ni number of grids
_q heat source per unit volume
rf reflection coefficient
r, x, z distance (m)
r⁄, x⁄, z⁄ dimensionless distance

t time (s)
T temperature (K)
T⁄ dimensionless temperature
Te temperature at time t (K)
To initial temperature (K)

Greek symbols
a thermal diffusivity (m2/s)
b laser pulse parameter (1/s)
c laser pulse parameter (1/s)
d absorption coefficient (1/m)
s dimensionless time
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