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a b s t r a c t

In this article Eyring–Powell peristaltic fluid flow with heat and mass transfer analysis have been inves-
tigated. New fluid model have been presented in peristaltic literature. The governing equations for pro-
posed Eyring–Powell fluid model are derived in cylindrical coordinates both in fixed and moving frame of
reference. Complex system of equations have been simplified using long wavelength and low Reynolds
number approximation. The momentum and heat/mass transfer balance equations are solved analytically
and numerically by employing perturbation method and shooting technique. Graphical results have been
discussed for pressure rise, frictional forces, temperature and concentration profile. Comparison of per-
turbation and numerical solutions have been presented through table and figures. Five different waves
forms have been considered for analysis. Trapping phenomena have been presented for different wave
forms.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The study of non-Newtonian fluid flows has gained much atten-
tion by the researchers because of its applications in biology, phys-
iology, technology and industry. In addition, the effects of heat and
mass transfer in non-Newtonian fluid [1,2] have great importance
in engineering applications like the thermal design of industrial
equipment, food stuffs, or slurries etc. Moreover Navier Stokes the-
ory become insufficient when there are some complex rheological
fluids. So there is need to study the non-Newtonian fluids [3,4].
Since not a single model exhibits all the properties of fluids, there-
fore, many non-Newtonian models have been presented by various
authors [5–7]. Erying Powell fluid model is one of the non-Newto-
nian fluid which was presented by Powell and Erying in 1944. This
is complex model but up to now not a single author have used this
model in peristalltic flow problems in an endoscope.

Peristalsis is a mechanism to pump the fluid by means of a mov-
ing contraction on the tubes or channels walls. Such mechanisms
mostly occurs in many biological and biomedical systems. In
physiology, these play an important role in various systems such
as urine transport from kidneys to bladder through the ureter,
chyme movement in the gastrointestinal tract, transport of sper-
matozoa in the ductus afferents of the male reproductive tracts,
movements of ovum in the female fallopian tube and circulation
of blood in the small blood vessels. In the past few decades, several

theoretical and experimental investigations have been made just
to understand peristalsis in different situations. The literature on
this topic is quite extensive. Mention may be made to some recent
studies include in Refs. [8–10] in the field for Newtonian and non-
Newtonian fluids. Heat and mass transfer effects on the peristaltic
flows in tubes, endoscope, and channels [11–15] are very impor-
tant because of its practical engineering applications, such as food
processing and blood pumps in heart lungs machines.

Eyring–Powell fluid model [16], a complex mathematical model
developed by Powell and Eyring in 1944. To the best of our knowl-
edge no investigation have been done to study the Eyring–Powell
fluid model in peristaltic literature, therefore to fill this gape
present study investigate the importances of peristaltic flow of
Eyring–Powell fluid in an endoscope. The governing equations for
Eyring–Powell fluid model are formulated considering cylindrical
coordinates system. The equations are simplified using the
assumptions of long wave length and low Reynold’s number
approximation. The simplified non-linear differential equations
are then solved analytically and numerically by perturbation and
shooting technique. At the end, the behavior of different parame-
ters of interest are shown graphically.

2. Mathematical model

For an incompressible fluid the balance of mass and momentum
are given by

div V ¼ 0; ð1Þ
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where q is the density, V is the velocity vector, P is the pressure S is
the Cauchy stress tensor, and d/dt represents the material time
derivative. The constitutive equation for Eyring–Powell fluid model
is given by [16]
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where l is the coefficient of shear viscosity, b and c are the material
constants.

3. Mathematical formulation

We have considered peristaltic flow of an incompressible
Eyring–Powell fluid in an endoscope. The flow is generated by

sinusoidal wave trains propagating with constant speed c1 along
the wall of the upper tube. Heat and mass transfer phenomena
have been consider giving temperature T0; T1 and concentration
C0 and C1 to the inner and outer tube respectively.

The geometry of the wall surfaces is defined as

R1 ¼ a1; ð4aÞ

R2 ¼ a2 þ b sin
2p
k
ðZ � c1TÞ; ð4bÞ

where a1 is the radius of the inner tube, a2 is the radius of the outer
tube at inlet, b is the wave amplitude, k is the wavelength, c1 the
wave speed and T the time. We are considering the cylindrical coor-
dinate system (R; Z), in which Z-axis lies along the center line of the
tube and R is transverse to it.

The governing equations in the fixed frame for an incompress-
ible flow are given as
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where P is the pressure and U; W are the respective velocity com-
ponents in the radial and axial directions in the fixed frame respec-
tively, C is the concentration of fluid, Tm is temperature of the
medium, D is the coefficients of mass diffusivity and KT is the
thermal diffusion ratio. In the fixed coordinates ðR; ZÞ; the flow is
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Fig. 1. Comparison of axial velocity for perturbation and numerical solutions when (a) K = 0.1, (b) K = 0.5, other parameters are / ¼ 0:4; e ¼ 0:1; dp
dz ¼ 0:4; z ¼ 0:5; M ¼ 0:5.

Table 1
Comparison of axial velocity for perturbation and numerical solutions when (a)
K = 0.1, (b) K = 0.5, other parameters are / ¼ 0:4; e ¼ 0:1; dp

dz ¼ 0:4; z ¼ 0:5; M = 0.5.

r Numerical sol
when (K ¼ 0:1)

Perturb sol Numerical sol
when (K ¼ 0:5)

Perturb sol

0.10 �1.000000 �1.000000 �1.000000 �1.000000
0.15 �1.013079 �1.014210 �1.016465 �1.010710
0.20 �1.020100 �1.021160 �1.029170 �1.018960
0.25 �1.026625 �1.030789 �1.037464 �1.025111
0.30 �1.030679 �1.031621 �1.042150 �1.031621
0.35 �1.045808 �1.038601 �1.045808 �1.035891
0.40 �1.036289 �1.040463 �1.047766 �1.038451
0.45 �1.037758 �1.041561 �1.048315 �1.039621
0.50 �1.038221 �1.041632 �1.048003 �1.037822
0.55 �1.037908 �1.040785 �1.046604 �1.038521
0.60 �1.036671 �1.037642 �1.044183 �1.037642
0.65 �1.034967 �1.036805 �1.041439 �1.029661
0.70 �1.032094 �1.033389 �1.037320 �1.028631
0.75 �1.029015 �1.029900 �1.033230 �1.025292
0.80 �1.024494 �1.024958 �1.027559 �1.022292
0.85 �1.020031 �1.020021 �1.022216 �1.018654
0.90 �1.013829 �1.014380 �1.015081 �1.014380
0.95 �1.007942 �1.007858 �1.007172 �1.006592
1.00 �1.000000 �1.000000 �1.000000 �1.000000
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