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Abstract

The flow problem within a straight microchannel of arbitrary cross section is analyzed. Exact analytical solutions for flow profile of a
channel flow with no-slip boundary conditions have been obtained in literature only for simple geometry of channel section. In this
paper, a number of problems with more complicated geometries are solved either exactly or approximately. Three general solution meth-
ods are discussed, namely, complex function analysis, membrane vibration analogy and variational method. The usefulness of each
method is justified with the help of examples.
� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Microfluidics has become an active field of research fol-
lowing development of micro devices like micro sensors,
micro mixers which find application in various fields of sci-
ence and engineering [1]. The flow problem within a
straight microchannel has been and still is a subject of
research because in the micro level the flow shows signifi-
cant deviation from that within a macrochannel. In the lit-
erature, the problem has been analytically solved only for a
few simple cross sectional geometries. The geometry of a
microchannel can, however, be complicated due to manu-
facturing restrictions. For example, the cross section may
have Gaussian profile during laser ablation in the surface
of polymer PMMA, the sidewalls of a rectangular channel
may have wall slope etc. The aim of this paper is to describe
various methods of analysis of fluid flow in a straight
microchannel of arbitrary cross section. As will be shown,
great many cases can be analyzed.

Three analytical methods are described in this paper. In
the first method, functions of a complex variable are effec-
tively used, whereas, the second method exploits the anal-
ogy of the problem with membrane vibration. In the
third method, a variational formulation of the problem is

given that can often aid in approximately calculating the
velocity profile within a channel of arbitrary cross section.

In this paper, it is assumed that the pressure driven flow
in microchannel is incompressible viscous flow governed by
Navier–Stokes equation, where inertial forces can be
neglected. No-slip boundary condition is assumed though
for very narrow channels this boundary condition may
not hold [2–4]. It is to be mentioned that although the anal-
ysis has been carried out for microchannels, same flow
equations appear as well in macrochannels if the linear flow
is assumed to be steady, fully developed and laminar [5].

2. Problem statement

Consider viscous incompressible flow within a straight
microchannel of uniform cross section. The steady flow
velocity u(y, z) along axial direction is governed by the fol-
lowing equation
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; ð1Þ

where dp
dx is the constant pressure gradient along the length

axis x. The y- and z-axes are orthogonal to the length axis
and x–y–z form a right handed co-ordinate system. No-slip
condition at the boundary is given as

uðy; zÞ ¼ 0 at uðy; zÞ ¼ 0; ð2Þ

0017-9310/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijheatmasstransfer.2007.11.058

* Tel.: +91 3222 282994.
E-mail address: goutam@mech.iitkgp.ernet.in

www.elsevier.com/locate/ijhmt

Available online at www.sciencedirect.com

International Journal of Heat and Mass Transfer 51 (2008) 4583–4588

mailto:goutam@mech.iitkgp.ernet.in


or
ou
os
¼ 0 along uðy; zÞ ¼ 0; ð3Þ

where s is the length measured along the boundary repre-
sented as u(y,z) = 0. The boundary curve is assumed to
be rectifiable.

So far, the exact velocity profile has been obtained for a
limited number of cases, e.g., flow through circular or ellip-
tical pipes, channel with rectangular cross section [6]. How-
ever, the form of the mathematical problem appears in
solid mechanics, for example, the problem of torsion of a
shaft with non-circular cross section [7], deflection of mem-
brane under constant load. If, analogy with physical prob-
lems are considered then a number of problems can be
solved either exactly or approximately. Three solution
methods are discussed below.

3. Closed form solution using complex functions

In this section, an exact analytical solution technique
using complex function analysis is given. The solution of
Eq. (1) can be given as

uðy; zÞ ¼ 1

4l
dp
dx

� �
ðy2 þ z2Þ þ u1ðy; zÞ; ð4Þ

where the function u1(y,z) satisfies the following equation
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It is well known that complex functional analysis can be
used to solve Eq. (5). In fact, the solution is either the real
part or the imaginary part of an analytic function f(y + iz)
where i ¼

ffiffiffiffiffiffiffi
�1
p

. If the function f is chosen in such a way
that u(y,z) vanishes at the boundary, i.e., Eqs. (2) or (3)
is satisfied then the corresponding u(y,z) is the solution of
the original problem. The method is explained with a few
examples.

Example 1. To find the velocity profile of flow within a
channel of circular cross section whose boundary is given
by u(y,z) = y2 + z2 � a2 = 0, the complex function
f(y + iz) is taken as a constant, say C. If C ¼ � 1

4l
dp
dx

� �
a2,

then the flow profile becomes

uðy; zÞ ¼ 1

4l
dp
dx

� �
ðy2 þ z2 � a2Þ ð6Þ

or in polar coordinate uðy; zÞ ¼ 1
4l

dp
dx

� �
ðr2 � a2Þ. This is the

solution of the given problem as it satisfies the boundary
condition.

Example 2. In this example the cross section is assumed to
be in the form of an equilateral triangle. Let the sides of the
triangle are represented as
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and

y þ 1

3
a ¼ 0: ð9Þ

In this problem assume f(n) = an3 + b where n = y + iz
with a, b as arbitrary constants. Taking the real part of f

as u1(y,z), one gets,

u1ðy; zÞ ¼ aðy3 � 3yz2Þ þ b; ð10Þ

yielding

uðy; zÞ ¼ 1

2l
dp
dx
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where a ¼ � 1
4l

dp
dx
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Eq. (12) is seen to produce the exact solution of the prob-
lem as it vanishes at the boundaries represented by Eqs.
(7)–(9).

Example 3. Consider a channel with cross section shown in
Fig. 1. The section is made of two circular arcs, one of a
circle of radius bwith origin at center and the other of circle
of radius a with origin at (a, 0). In order to obtain flow pro-
file the use of polar co-ordinates is most effective. The com-
plex function is taken as f ðnÞ ¼ Anþ B

n þ C, where A, B
and C are constants. Taking the real part of f one gets
the solution of Eq. (5) as

u1ðr; hÞ ¼ Ar cos hþ B
r

cos hþ C; ð13Þ

where r2 = y2 + z2 and tanh = z/y. For the given problem

choose A ¼ � 1
4l

dp
dx

� �
;B ¼ 1

4l
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� �
2b2a and C ¼ � 1

4l
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� �
b2.

The flow profile then becomes

Radius = a

Radius = b 

y 

z 

Fig. 1. Channel cross section made by two intersecting circles.
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