Accepted Manuscript

Toehold-mediated strand displacement reaction triggered by nicked DNAzymes substrate for amplified electrochemical detection of lead ion

Jianmin Zhao, Ting Zheng, Jiaxi Gao, Wenju Xu

PII: S0013-4686(18)30827-2

DOI: 10.1016/j.electacta.2018.04.083

Reference: EA 31650

To appear in: Electrochimica Acta

Received Date: 19 December 2017

Revised Date: 10 April 2018

Accepted Date: 11 April 2018

Please cite this article as: J. Zhao, T. Zheng, J. Gao, W. Xu, Toehold-mediated strand displacement reaction triggered by nicked DNAzymes substrate for amplified electrochemical detection of lead ion, *Electrochimica Acta* (2018), doi: 10.1016/j.electacta.2018.04.083.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Toehold-mediated strand displacement reaction triggered by
2	nicked DNAzymes substrate for amplified electrochemical
3	detection of lead ion
4	
5	Jianmin Zhao, Ting Zheng, Jiaxi Gao, Wenju Xu [*]
6	Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest
7	University), Ministry of Education, School of Chemistry and Chemical Engineering,
8	Southwest University, Chongqing 400715, PR China
9	
10	Abstract: Searching for a sensitive analytical method for the detection of lead ion
11	(Pb ²⁺) without involving any enzymes is of great significance in environmental
12	monitoring. Herein, based on the integration of toehold-mediated strand displacement
13	reaction (TSDR) and the electrocatalysis of magnetic Fe ₃ O ₄ toward electron mediator
14	methylene blue (MB) for signal amplification, a sensitive electrochemical biosensor
15	for Pb ²⁺ was developed by using Pb ²⁺ -specific DNAzymes as recognition probe. The
16	electrode surface was firstly modified with Au nanoparticles (AuNPs)-loaded Fe_3O_4
17	nanocomposites (AuNPs@Fe ₃ O ₄) and a DNA duplex containing the capture probe
18	(NH ₂ -CP) with two specific toehold sequences. Fuelled by the cleaved substrate
19	fragments (rSS) of Pb ²⁺ -specific DNAzymes, TSDR was activated to allow for the
20	complete assembly of MB-labelled signal probe (MB-SP) through the hybridization
21	with NH ₂ -CP, resulting in the spatial proximity of MB close to Fe ₃ O ₄ in the modified

^{*}*Corresponding authors. Tel.:* +86 23 68252277; *fax:* +86 23 68253172. E-mail address: xwju@swu.edu.cn (W. Xu).

Download English Version:

https://daneshyari.com/en/article/6602950

Download Persian Version:

https://daneshyari.com/article/6602950

Daneshyari.com