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a b s t r a c t

We prepare a novel redox-additive organic electrolyte containing phenylenediamine for a graphene-
hydrogel supercapacitor. By adopting this electrolyte, significant capacity enhancement (47e596% in-
crease) is achieved. At the concentration of 0.02mol l�1, the specific capacity value of the graphene-
hydrogel electrode reaches 171mAh g�1, 287mAh g�1, and 353mAh g�1 at 1 A g�1 for o-phenylenedi-
amine (OPD), m-phenylenediamine (MPD), and p-phenylenediamine (PPD), respectively. The enhance-
ment by PPD is more significant than OPD and MPD at concentrations higher than 0.02mol l�1. This
behavior is likely caused by the para-amino groups, which exhibits less stereo-hindrance during the
absorption of phenylenediamine onto the graphene surface. In the electrolyte containing 0.04mol l�1 of
PPD, specific capacity of 516mAh g�1 at 1 A g�1 and energy density of 143 Wh kg�1 with power density of
1.11 kWkg�1 are achieved. Meanwhile, 93.8% of the electrode's initial capacity (433mAh g�1) is retained
after 5000 cycles at 2 A g�1, demonstrating its excellent cycling stability.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The electrochemical capacitors, also known as supercapacitors
(SCs), exhibits high power density (allowing fast charging and
discharging) and long cycling life (>100,000 cycles). These advan-
tages over traditional batteries have attracted considerable
research interest from both academia and industry [1,2]. However,
relatively low energy density has limited its application as the sole
power source in various applications (e.g., portable electronics,
electric or hybrid electric vehicles, aircraft, and smart grids) [3e7].
Currently, the commercial SCs exhibit energy density value of 5e10
Wh kg�1 [8,9], lower than that of lead acid batteries (25e35 Wh
kg�1) and lithium ion batteries (200e400 Wh kg�1) [10]. Signifi-
cant research effort has been devoted to improve the energy den-
sity of SCs without sacrificing their power density and cycling
stability [5,6,8,9].

Recent research has shown that adding redox-active compound
into the electrolytes can effectively improve the specific capaci-
tance. In this type of devices, the electrochemical characteristics
consists of electric double-layer capacitance (EDLC) and diffusion-
controlled faradaic reaction of the adsorbed active compound on
the electrode [11,12]. The latter is closely related to electrochemical
behavior of flow batteries [13,14]. Fe(CN)63�/Fe(CN)64� [15] and
iodine/iodide [16] are the first redox mediators studied by re-
searchers. The iodine/iodide couple demonstrates specific capaci-
tance as high as 1000 F g�1 (222mAh g�1). Yoo et al. study pentyl-
viologen/bromide redox pair and fabricate an asymmetric super-
capacitor exhibiting energy density of 48.5 Wh kgdry�1 at 0.5 A gdry�1.
Phenyl compounds and their relatives, such as phenylenediamine
[17,18] and hydroquinone [19,20], have also been studied as redox
additives. In particular, phenylenediamine is a promising choice
because of its low-cost and the highly reversible two-electron
redox reaction, which results in significant pseudocapacitive
contribution. Zhang and coworkers adopted phenylenediamine-
mediated aqueous electrolyte with 1,4-dichlorobenzene derived
carbon, demonstrating a specific capacitances of 504.1 F g�1

(140mAh g�1) at 3 A g�1 [17]. Wu et al. studied aqueous KOH/PPD
electrolyte and show a specific capacitance of 605.2 F g�1 (168mAh
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g�1) [18]. However, when using organic electrolyte for higher
operating voltages, the capacitance enhancement decreased dras-
tically. Yu and coworkers investigated the phenylenediamine-
mediated acetonitrile electrolyte with activated-carbon electrode
but only found the specific capacitance to be 68 F g�1 (51mAh g�1)
[21]. Because high cell voltage leads to high energy density,
developing a phenylenediamine-mediated organic electrolyte is
important for pursuing low-cost and high-performance
supercapacitors.

The difference in the enhancement between aqueous and
organic electrolytes likely originates from the interaction between
phenylenediamine and the carbon-based electrodes. In 1990s, the
interaction of aromatic compounds via inter-molecular forces,
especially p-p interaction, has been widely studied [22,23]. The
above-mentioned researches on the phenylenediamine-mediated
electrolytes are all based on activated carbon electrodes. As we
known, the solvation energy needs to be compensated as the
redox-mediator is absorbed onto the electrode from the electrolyte.
The irregular surface of the activated carbon electrode exhibits
limited p�electron characteristics, incapable of compensating the
energy for phenylenediamine desolvation, especially in organic
solvent.

As a promising alternative carboneous material, graphene
demonstrates high electrical conductivity while exhibiting high
surface area and good chemical stability [24,25]. Its electrochemical
properties can be further improved by forming 3D structure, such
as foams [26], hydrogels [27], or sponges [28]. These different ar-
chitectures effectively prevent the restacking between graphene
sheets and preserve the p�electron characteristics of the graphene
surface [29,30]. Interestingly, graphene can be functionalized non-
covalently (such as via p-p interaction) without interrupting the
electrical conductivity of graphene architectures [31,32]. The
functionalization further improves the specific capacitance of gra-
phene electrodes.

Herein, by adopting the strategy of non-covalent functionali-
zation of graphene, we prepare a phenylenediamine-containing
organic electrolyte for graphene-hydrogel (GH) based super-
capacitors. The electrochemical properties of GH electrodes are
characterized to reveal significant capacity enhancement by the
phenylenediamine addition. The GH electrode exhibits large spe-
cific capacity of 516mAh g�1 and high energy density of 143 Wh
kg�1 at 1 A g�1. Moreover, 93.8% of the electrode's capacity are
retained after 5000 cycles at 2 A g�1, demonstrating great potential
in practical applications.

2. Experimental section

2.1. Preparation of electrodes and redox-additive organic
electrolytes

All reagents used in this work are of analytical grade unless
mentioned otherwise. Graphene-hydrogel electrodes are prepared
by hydrothermal-chemical reduction of graphene oxide (GO). GO is
prepared from high-purity graphite flakes (Aladdin, 99.99%, 8000
mesh) according to the Hummers' method [33]. For the
hydrothermal-chemical reduction, NaHSO3 is added into the
2mgml�1 homogeneous aqueous GO dispersion as the reducing
agent. A mass radio of 3:1 between NaHSO3 and GO is adopted
according to a reported method [34]. After sufficient stirring, 1.5ml
of the mixture is sealed in a 20-ml glass vial and heated at 95 �C in
an oven for 3.5 h to form the graphene-hydrogel (GH). The as-
prepared GH disc is dialyzed in deionized water for 12 h to
remove the residual inorganic compounds. After the dialysis, the
GH disc is pressed onto a piece of 16-mm round nickel-foam cur-
rent collector under 5MPa pressure. The electrode is dried at 100 �C

for 12 h. Themass loading of GH on each electrode is approximately
1.5mg.

MeEt3NBF4 is chosen as the supporting electrolyte in acetoni-
trile. o-phenylenediamine (OPD) (Aladdin, AR), m-phenylenedi-
amine (MPD) (Aladdin, AR), and p-phenylenediamine (PPD)
(Aladdin, AR) are used as the redox additives. As an example, to
40ml of 1mol l�1 MeEt3NBF4 acetonitrile solution, 0.0864 g
(0.02mol l�1) of p-phenylenediamine (Aladdin, AR) is dissolved to
make the redox organic electrolytes [1M MeEt3NBF4 þ 0.02 M
PPD]. Electrolyte solutions contain different amount of OPD
(0e0.03 mol l�1), MPD (0e0.03mol l�1), and PPD (0e0.06mol l�1)
are also made according to the same method.

2.2. Characterizations and measurements

The microstructure and morphology of the as-obtained GH
electrodes are characterized by scanning electron microscopy
(SEM; Hitachi SU8010). X-ray diffraction (XRD) patterns are
collected on a Rigaku Miniflex diffractometer equipped with Cu Ka
radiation (l¼ 1.5418Å). XPS spectra are obtained from a Thermo
Scientific ESCALAB 250Xi X-ray Photoelectron Spectrometer with
Mg Ka radiation as the excitation source. Raman spectra are
collected on LabRAM HR Evolution (France). N2 adsorption-
desorption test is done on a Micromeritic ASAP 2020M.

Cycle voltammetry (CV) measurements are conducted on a PINE
electrochemical workstation (Wavedrive 10). The electrochemical
characterization of individual electrodes are performed in a three-
electrode cell configuration, with a platinum counter electrode and
an Ag/AgCl reference electrode (0.241 V vs. SHE at 25 �C). The gal-
vanostatic charge-discharge (GCD) tests are carried out on a New-
are Battery Measurement System (Neware, China) at various
current densities within the voltagewindowof 0.01e2.7 V. A sealed
electrolytic beaker cell in two-electrode configuration is adopted
for GCD tests. The cell contains two pieces of GH electrodes and
phenylenediamine-mediated electrolyte to form a symmetrical
supercapacitor. Prior to the supercapacitor assembly, CV scan is run
on the GH electrodes from �1.35 V to 1.35 V (vs. Ag/AgCl) at
20mV s�1 for 100 cycles in the corresponding phenylenediamine-
mediated electrolyte.

Electrochemical impedance spectroscopy (EIS, in a frequency
range from 100 KHz to 0.01 Hz) of supercapacitors are performed
on a Chenhua CHI660 electrochemical workstation. The specific
capacity (Qm/mAh g�1) of the GH electrodes is calculated based on
Equation S(1) (for CV) and S2 (for GCD) in the supporting infor-
mation. The supercapacitor energy density (E/Wh kg�1) and power
density (P/W kg�1) are calculated according to Equations S(3) and
S(4).

3. Results and discussions

3.1. Characterizations of the GH electrodes

The appearance of the as-obtained GH and GH electrode is
shown in Fig. 1a. The interconnected graphene sheets form a three
dimensional hydrogel structure (Fig. 1b), effectively prevent the
accumulation and restacking of graphene layers in the GH [35]. The
powder XRD patterns of the pristine graphite, GO, and freeze-dried
GH are shown in Fig.1c. As we can see, GH exhibit aweak and broad
diffraction hump near 26.1�, corresponding to an interlayer spacing
of 0.38 nm, showing little restacking of the graphene sheets [36].
Meanwhile, the characteristic signal of GO at 10� disappears in GH,
indicating the successful reduction of GO to graphene. The Raman
spectra (Fig. 1d) of GH exhibits two peaks at about 1348.7 and
1579.3 cm�1, corresponding to the D band and G band of carbon
material [37]. The intensity ratio between the D band and the G
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