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a b s t r a c t

This study investigates the effects of variable viscosity and frictional heating on the laminar flow in a
horizontal channel having a wall at rest and a moving wall subjected to a prescribed shear stress. The wall
at rest is thermally insulated, while the moving wall is kept at a uniform temperature. This investigation
concerns fluids whose viscosity depends exponentially on the pressure and temperature. An appropriate
approximation is introduced to analyze the interplay between the dependence of viscosity on the pres-
sure and temperature and the viscous dissipation. It is shown that the nonlinear term in the equation for
the balance of energy representing the frictional heating may lead to the existence of dual solutions of the
boundary value problem for fixed values of the material parameters that characterize the fluid. The
results obtained are compared with those predicted by the generalization of the Oberbeck–Boussinesq
approximation for a fluid with pressure and temperature dependent viscosity. It is found that the results
for the approximation carried out in this paper and those that stem from the Oberbeck–Boussinesq
approximation are markedly different.

� 2010 Published by Elsevier Ltd.

1. Introduction

Under normal operating conditions, the viscosity of an incom-
pressible fluid is assumed to be independent of the pressure.
However, it is well known that the viscosity of a fluid can vary with
pressure, and if the pressure range is significantly large the viscos-
ity can change by several orders of magnitude. In his celebrated
paper on the response of fluids, Stokes [35] recognizes that the vis-
cosity of a fluid could depend upon the pressure. However, based
on the experiments of Du Buat on the flow of water in canals
and pipes under normal operating conditions, Stokes suggested
that the viscosity could be considered a constant for such flows.
Stokes is however very careful to delineate the class of flows
wherein viscosity might be considered a constant and he also
remarks that such an assumption would be invalid under other
flow conditions. Unfortunately, the caveat that Stokes was careful
to document has been largely ignored, both because of the mathe-
matical ease that the assumption of constant viscosity confers, but
also due to a lack of attention to detail of the subsequent research-
ers. In many organic liquids, while the density might change by a

few percent due to a significant change in the pressure, the viscos-
ity, on the contrary, could change by many orders of magnitude (as
much as a factor of 108!) (see, for instance, [22] and references
therein). Thus one could consider such liquids as incompressible
fluids with pressure dependent viscosities. It is important to bear
in mind, while making such an approximation that no body is truly
incompressible and based on the process class that the body is sub-
ject to we can either choose to neglect or include the volume
changes that occur.

As early as 1893 Barus et al. [3] proposed an empirical relation-
ship between the viscosity and the pressure, namely

lðpÞ ¼ lref exp½bðp� prefÞ�;

where lref is the viscosity at the reference pressure pref and b is a
coefficient that determines how the viscosity varies with pressure,
the coefficient depending upon the temperature. Later, Andrade
[1] suggested the following expression for the viscosity

lðp;q; hÞ ¼ Aq1=2 exp ðpþ qr2Þ s
T

h i
;

based on experiments. In the above expression q denotes the
density, T the temperature, p the pressure, and r, s and A are
constants. More recently, Laun [11] has modeled the viscosity of
polymer melts through

lðp; TÞ ¼ lref exp½bðp� prefÞ � cðT � TrefÞ�; ð1Þ
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where lref is the viscosity at the reference pressure pref and refer-
ence temperature Tref, while b and c are non-negative constants.
There have been numerous other experiments by Bair and co-
workers that shows that the dependence of the viscosity on the
pressure is exponential (see the recent experiments of Bair and
Kottke [2]). Mention must be made of the work of Martín-Alfonso
and co-workers [17] wherein an intricate relationship among the
temperature, viscosity and pressure is provided for bitumen. In this
context, it ought to be pointed out that the pressure dependence of
the properties of bitumen were recognized very early. For instance,
Saal and Koens [32] not only allowed for viscosity to depend on
pressure (the normal stress), they even allowed it to depend on
the shear stresses. Thus, they had a truly implicit constitutive model
relating the stress and kinematical quantities (see also [18,33]).

The Oberbeck–Boussinesq approximation is one of the most
useful approximations in fluid mechanics and is used extensively
to study problems in astrophysical and geophysical fluid dynamics.
However, the approximation is not an approximation that is a per-
turbation in which like terms of the same order in a small param-
eter are retained. Until recently, many attempts were been made to
justify the approximation but none of them are compelling and
lack rigor (the reader is referred to [24] for a detailed discussion
of these attempts). The main problem with all these attempts is
the necessity to retain a term in the equations that is a product
of the coefficient of thermal expansion and gravity is to be of order
unity while the coefficient of thermal expansion has to tend to
zero. The problem stems from the small parameter that is used
in the perturbation. Recently, Rajagopal et al. [24] have introduced
a different parameter, one suggested by Chandrasekhar [5], to car-
ry out the perturbation and have systematically derived the Ober-
beck–Boussinesq approximation. In the paper, Rajagopal et al. [24]
introduce a different method to deal with the constraint of a body
being mechanically incompressible but having the ability to
change volume due to temperature changes. The key to a proper
basis for the Oberbeck–Boussinesq approximation in the choice
of the small parameter with which to carry out the perturbation
and once a proper choice is made, the rest of the analysis follows
easily. The classical Oberbeck–Boussinesq approximation concerns
a fluid with constant viscosity and thus when the viscosity of the
fluid is not constant and depends on variables such as the temper-
ature and pressure, one needs to develop an approximation that is
appropriate for such fluids.

In recent years there has been a considerable interest in fluids
with pressure dependent viscosity. Rajagopal and co-workers
([8,15,16,21–23,25–27,36,38]) have studied in detail several
important and basic problems related to such fluids. In particular,
in [26] we have provided a rigorous mathematical justification for
the Oberbeck–Boussineq approximation that appeals to a pertur-
bation procedure. The small parameter � with respect to which
we have performed our perturbance is the product of the coeffi-
cient of thermal expansion evaluated at the reference temperature
and the difference between the constant temperatures at which
the walls bounding the horizontal fluid layer are kept. We have de-
rived the Oberbeck–Boussineq approximation for fluids whose
material moduli are analytical functions of pressure and tempera-
ture by assuming the Froude number to be of order O

ffiffiffi
�
p� �

. By
virtue of this assumption the viscous dissipation term in the equa-
tion of balance of energy may be neglected. But there are several
problems concerning flows of fluids in ducts in which the effects
of viscous dissipation is not negligible, which is a necessary conse-
quence of the Oberbeck–Boussineq approximation. The inclusion
of viscous dissipation is particularly important when dealing with
highly viscous fluids such as engine oils and polymer melts.

In the literature there is a significant amount of theoretical and
numerical results concerning the subject of laminar convection with
frictional heating (see for instance [3,4,6,7,10,12–14,19,20,34] and

references therein) due to their relevance to several engineering
applications. In these works the authors automatically invoke the
Oberbeck–Boussineq approximation in developing the equation
that stems from the balance of momentum while at the same time
retaining the viscous dissipation term in the equation for the bal-
ance of energy. Dealing with these non linear governing equations
leads to non-existence or non-uniqueness of the solution depending
on the choice of the boundary conditions. Examples of multiple lam-
inar solutions are discussed in [3,4,6,10,12]. In this paper we shall
not invoke the Oberbeck–Boussinesq approximation in the equation
that stems from the balance of linear momentum as seems to be cus-
tomary in the literature until now, but we shall introduce a new set
of approximate equations adapted to investigate the flows in highly
viscous fluids wherein the frictional heating is not negligible. The
approximation we shall introduce in Section 3 differs from the
equations adopted in the literature only in the equation for the bal-
ance of linear momentum (see Eq. (39) and note that the fluid den-
sity which appears is the constant reference density).

The plan of the paper is the following. In Section 2 we introduce
the constitutive fluid model and derive the governing equations. In
Section 3 we derive the approximate equations by using a pertur-
bation procedure. The small parameter with respect to which we
shall carry out our perturbance will be the dimensionless parame-
ter � mentioned above, under the assumption that the Froude
number is now of order of unity or greater so that the viscous dis-
sipation term in the equation for the balance of energy may be re-
tained. In Section 4 we shall analyze the steady fully-developed
mixed convection in a horizontal plane parallel channel filled with
a fluid whose viscosity depends on pressure and temperature
according to (1) and with a wall at rest and thermally insulated.
The other wall is kept at constant temperature and subjected to
a uniform shear stress generating a uniform wall velocity. The re-
sults obtained reveal that, for given values of the material moduli
that appear in the constitutive representation for the fluid, the
solution of the boundary value problem does not always exists
and when it does exist, it is in general not unique. Finally, these
results are compared with the solution to the corresponding
boundary-value problem arising from the generalized Oberbeck–
Boussinesq equations we have derived in [26].

2. Governing equations

We record below the local forms of the balance of mass, linear
momentum and energy, as well as the second law of thermody-
namics in the form of the Clausius–Duhem inequality (see, for
instance, [37]):

_qþ qdivv ¼ 0; ð2Þ
q _v ¼ divTþ qb; ð3Þ
q _eþ divq ¼ T � Dþ qr; ð4Þ

q _g P q
r
h
� div

q
h

� �
; ð5Þ

where the dot denotes total time derivative, q is the density, v the
velocity field, T the Cauchy stress tensor, b the specific external
body force field, e the specific internal energy, r the specific radiant
heating, h the temperature, q the heat flux vector, D the symmetric
part of the velocity gradient and g the specific entropy. A few words
concerning the Clausius–Duhem inequality are warranted. The
inequality has been used extensively to obtain restrictions on the
allowed forms of the constitutive equations. One does this by sub-
jecting the body to arbitrary processes and requiring that the sec-
ond law be met in all these processes. This leads to necessary and
sufficient conditions which will guarantee that the constitutive
relations will meet the second law. However, one has to keep in
mind that the constitutive relations that one chooses are predicated

784 K.R. Rajagopal et al. / International Journal of Heat and Mass Transfer 54 (2011) 783–789



Download	English	Version:

https://daneshyari.com/en/article/660319

Download	Persian	Version:

https://daneshyari.com/article/660319

Daneshyari.com

https://daneshyari.com/en/article/660319
https://daneshyari.com/article/660319
https://daneshyari.com/

