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a b s t r a c t

This paper describes the heat transfer analysis with thermal radiation on the two-dimensional magneto-
hydrodynamic (MHD) flow in a channel with porous walls. The upper-convected Maxwell (UCM) fluid
fills the porous space between the channel walls. The corresponding boundary layer equations are trans-
formed into ordinary differential equations by means of similarity transformations. The resulting prob-
lems are solved by employing homotopy analysis method (HAM). Convergence of the derived series
solutions is ensured. The effects of embedded parameters on the dimensionless velocity components
and temperature are examined through plots. The variation of local Nusselt number is also analyzed.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The flows in porous channels/tubes are of special interest in the
several applications in biomedical and mechanical engineering.
Such flows appear in the blood dialysis in artificial kidney, flow
in the capillaries, flow in blood oxygenators, the design of filters
and design of porous pipe. Many fluids of industrial importance
are non-Newtonian. An extension of flow analysis from viscous
to the non-Newtonian fluids is not so straightforward. In fact, the
difficulties occur by the diversity of non-Newtonian fluids in their
constitutive relationship and simultaneous effects of viscosity and
elasticity. These viscoelastic effects add complexities in the result-
ing differential equations. Some interesting contributions on the
topic can be found in the studies [1–15] and several references
therein.

The non-Newtonian fluids are mainly classified into three types
namely differential, rate and integral. The simplest subclass of the
rate type fluids is the Maxwell model [16]. This fluid model can
very well describe the relaxation time effects. It is worthmention-
ing to point out that Maxwell did not developed his model for poly-
meric liquids, but instead for air, the methodology used by him has
been extended by Rajagopal and Srinivasa [17] to produce a pleth-
ora of rate type models [18]. Choi et al. [19] discussed the steady
hydrodynamic boundary layer flow of an incompressible Maxwell

fluid in a porous channel. Abbas et al. [20] reported magnetohydro-
dynamic effects on the flow analysis presented in a study [19].
Hayat et al. [21,22] extended this analysis for the second grade
and Jeffery fluids. Then Hayat and Abbas [23] discussed boundary
layer flow of an incompressible Maxwell fluid in porous channel
with chemical reaction.

The aim of present attempt is to venture further in this regime.
For that we have an interest to examine the steady boundary layer
flow of an upper-convected Maxwell fluid in a porous channel with
heat transfer analysis when radiation effects are present. An
incompressible fluid saturates the porous medium. The resulting
nonlinear problem is treated for a series solution by homotopy
analysis method (HAM) [24–45]. Convergence of the HAM solution
is established and the variations of emerging parameters are high-
lighted on the velocity and temperature.

2. Definition of the problem

Let us examine the heat transfer characteristics on MHD two-
dimensional flow of an incompressible upper-convected Maxwell
fluid in a channel with porous walls at y = ±H/2 (see, Fig. 1). Porous
medium fills the space between the walls of the channel. Flow is
induced by suction/blowing. A constant magnetic field B0 is ap-
plied in the y-direction and there is no external electric field. The
induced magnetic field is neglected under the assumption of small
magnetic Reynolds number. Furthermore, symmetric nature of the
flow is taken into account and pressure gradient is neglected.

0017-9310/$ - see front matter � 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijheatmasstransfer.2010.09.069

⇑ Corresponding author at: Department of Mathematics, College of Science, King
Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia. Tel.: +92 51 90642172.

E-mail address: pensy_t@yahoo.com (T. Hayat).

International Journal of Heat and Mass Transfer 54 (2011) 854–862

Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier .com/locate / i jhmt

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.09.069
mailto:pensy_t@yahoo.com
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.09.069
http://www.sciencedirect.com/science/journal/00179310
http://www.elsevier.com/locate/ijhmt


Both the walls have same temperature TH. The temperature at
the centerline (y = 0) is @T

@y ¼ 0. The boundary layer equations for
the flow under consideration are
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in which u and v are the velocity components in the x and y-direc-
tions respectively, q is the fluid density, m is the kinematic viscosity,
r is the electrical conductivity, / is the porosity, k is the permeabil-
ity of the porous medium, k is the relaxation time, cp is the specific
heat at constant temperature, k0 is the thermal conductivity of the
fluid, T is the temperature and qr is the radiative heat flux. Further, it
is pointed out that Eq. (2) is a correct version of the equation of mo-
tion in the previous studies [20,46–52].

Using the Rosseland approximation for radiation in an optically
thick layer [53] one obtains
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where r* is the Stefan–Boltzmann constant and k* is the mean
absorption coefficient. By Taylors’ series about TH, T4 can be written
as

T4 ffi 4T3
HT � 3T4

H: ð5Þ

With the help of Eqs. (4) and (5), Eq. (3) becomes
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The relevant boundary conditions are

@u
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¼ 0; v ¼ 0;

@T
@y
¼ 0 at y ¼ 0; ð7Þ
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2
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2
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in which V > 0 corresponds to suction and V < 0 indicates
blowing.

Invoking the following non-dimensional parameters [19]
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the similarity equations resulting from Eqs. (2) and (6) are
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Eqs. (7) and (8) now give
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in which
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are respectively called the Hartman number M, the porosity param-
eter K, the Reynolds number Re, the Deborah number De, the Pra-
ndtl number Pr, the Eckert number Ec and radiation parameter Rd.
It is worth mentioning to note that Re > 0 corresponds to suction
case and Re < 0 for blowing. For Newtonian fluid De = 0.

The local Nusselt number Nux is defined as
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In next section, series solutions for problem given by Eqs. (10)–(13)
will be constructed by the homotopy analysis method.

3. Homotopy analysis solutions

For HAM solutions, the set of base functions for f(y) and h (y) can
be expressed, respectively by

fy2nþ1;n P 0g; ð16Þ
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in the form
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where an and bn are the coefficients to be determined. The initial
guesses f0(y) and h0(y) are chosen as
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3
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The auxiliary linear operators Lf and Lh with their properties are gi-
ven below

Fig. 1. Physical model.
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