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A new variant of the Smoothed Particle Hydrodynamics (SPH) simulations of the natural convection phe-
nomena is introduced. In many situations, where the density may vary significantly under the influence
of temperature non-uniformities, the classical Boussinesq approximation fails. To characterize such
situations, the Gay-Lussac dimensionless number is useful as a measure of density variations in non-
isothermal flows. The novel points of the proposed modeling beyond the Boussinesq regime include
the proper implementation of the buoyancy force and a smart connection between particle volume
and incompressibility constraint. To examine the correctness of the new approach, numerical results
are confronted with available reference data.
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1. Introduction

Natural convection phenomena, due to their relevance to many
scientific and technical issues such as nuclear reactor systems,
foundry devices, geophysical and astrophysical processes, etc.,
have been intensively studied in the literature. In particular, due
to geometrical simplicity, square and rectangular wall-heated cav-
ities have been widely explored. The most-cited benchmark solu-
tions were provided by de Vahl Davis [1] using second-order
central difference scheme. He performed simulations of steady-
state natural convection in a horizontally-heated square cavity at
the Rayleigh numbers up to Ra = 10°. His studies were continued
by numerous researchers to extend the range up to Ra=10% by
Le Quéré [2] and Ra=10'! by Lage and Bejan [3]. Evolution of
the CFD methods led to benchmark solutions performed using
other approaches such as Discrete Singular Convolution (DSC) [4]
and the Lattice Boltzmann Method (LBM) [5].

All the above-mentioned papers are based on the Boussinesq
approximation. However, the natural convection is often driven
by large temperature differences leading to considerable density
variations. In these cases the Boussinesq approximation fails. This
situation takes place in foundry processes and astrophysical
MHD simulations. In the literature, papers dealing with the non-
Boussinesq regime are rare. The square side-heated cavity simula-
tions of natural convection caused by large density variations were
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performed in the compressible Eulerian approach by Pesso and
Piva [6], Vierendeels et al. [7] and Backer and Braack [8].

In the present work, a new technique for Smoothed Particle
Hydrodynamics (SPH) simulations of natural convection phenom-
ena beyond the Boussinesq regime is proposed. The SPH is a fully
Lagrangian, particle-based method for fluid-flow computations.
In the early stage it was developed by Monaghan [9] for some
astrophysical phenomena, but nowadays, the SPH is increasingly
often used for flows with interfaces and common in geophysical
and astrophysical applications. The main advantage over Eulerian
techniques is no requirement of the grid. Therefore, it is a natural
approach to simulate multiphase flow phenomena as well as flows
in complex geometries. In the present work we consider only
incompressible flows (no density dependence on the hydrostatic
pressure). This constraint is assured using weakly compressible
technique, where the standard set of governing equations is closed
by a suitably-chosen, artificial equation of state. An introduction to
the SPH method is presented in Section 2.

As briefly recalled in Section 2 below, field quantities as den-
sity and temperature in SPH are modeled exactly at moving par-
ticles. As shown in Section 3.1, an implementation of the
Boussinesq approximation in SPH is straightforward. It is done
by extending the Navier-Stokes equation with an additional term.
The SPH simulations under Boussinesq approximation were pre-
sented by Cleary and Monaghan [10]. The novel SPH approach
for performing simulations in the non-Boussinesq regime is de-
scribed in Section 3.2. The key points of this technique are the
proper implementation of the buoyancy force and a smart con-
nection between particle volume and incompressibility con-
straint, cf. Section 4.
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2. SPH formulation
2.1. Basic ideas

The main idea behind the SPH is to introduce kernel interpo-
lants for flow quantities so that the fluid dynamics is represented
by particle evolution equations, cf. [9-11] for a review. The SPH
method is composed of two approximations. The first is interpola-
tion of the field quantities at the point. To construct it, an integral
interpolant ;\(r) of any field A(r) is used

Ar)= [ Ar)

Q

W(r—r, h)dr, (1)

where the integration is over all the domain Q. Here, W(r,h) is a
weighting function (kernel) with a parameter h (smoothing length)
that can be treated as a characteristic dimension of kernel. Gener-
ally, the kernel should posses the symmetrical form

W(r,h) = W(-r,h) (2)
and enjoy following properties:
lim W(r,h) = o(r), (3)

where §(r) is the Dirac delta, and should be normalized so that

/ W(r, hydr = 1. (4)
Q

The additional condition is that W € C" (where n > 1) and it is at
least as many times differentiable as the field A. There are numer-
ous possibilities to choose the kernel. To reduce the computational
effort and properly implement the boundary conditions (Section
2.3), we decided to use the compact quintic spline kernel [12]:

W(r.h) = {4"“ (1-5) (1), forri<2n, (5)

0, otherwise.

The second approximation of the SPH technique is discretization of
space. This is done through dividing the domain into a fine-grained
representation (particles). Each particle carries the properties of the
field. The integral interpolant (1) becomes then the summation
interpolant

=3 Am)W(
b

where 1, and Q; denote the position and volume of the particle b.
The SPH task consists in computing the interpolant at each particle
(say, a), so that Eq. (6) may be rewritten into the form

Ay =D AWar (), (7)
b

r_rbyh)Qba (6)

where (A), = (A)(rq), Ap = A(rp) and Wop(h) = Wpe(h) = W(rp — 1, h).

An additional quality of the SPH reveals when it comes to differ-
entiation of the fields. In accordance with (1), the smoothed gradi-
ent of a scalar field A(r) (for vector fields the procedure is
analogous) assumes the form

/VA

Taking advantage of the integration by parts rule and using the ker-
nel symmetry, Eq. (8) is transformed into

W(r —r' h)dr'. (8)

VA®T) = AR )W(r - 1)) 0 + / AX)V'W(r - ¥, hydr’. (9)

Generally, the first r.h.s. term does not necessarily vanish for finite
systems. The common practice is to neglect it and deal with the
boundaries explicitly. The SPH discretization of (9) results in

VA, =Y A VW (h)Qp. (10
b

Since the nabla operator acts only on the kernel, the SPH gradient of
the field is dependent only on the values of the fields at particles,
not gradients.

The way of obtaining higher derivatives is straightforward. For
example, the Laplace operator which acts on the field A(r) has
the form

=3 AV We(h
b c

However, due to the accuracy and efficiency requirements, com-
monly used form is built as a combination of the finite difference
approach and the SPH approximation [10].

)V Wie(h)Qp Q. (11)

2.2. Governing equations

The full set of governing equations for incompressible viscous
flow is composed of the Navier-Stokes equation

du 1 2

= _ - u 12
T 2 Vp+ywWu+g, (12)
where g is the density, u the velocity vector, t the time, p the pres-
sure, v the kinematic viscosity, g the gravitational acceleration, and
the continuity equation

do

S _ _oV.-u 13
- oV (13)
that in the incompressible regime takes the divergence-free form
V -u = 0. Taking heat transfer into account, the system is extended
by the energy equation (here, in the simplified form, as in [6])

0Cp Z—Z =V (kVT), (14)

where T is temperature, ¢, is the specific heat and k is conductivity.
Since the SPH is fully Lagrangian, we extend the above system by
relation

dr
de
Additionally, it is important to note that writing SPH approxima-
tions of the field quantities, we assume that (A), ~ A,. This relation-
ship expresses no distinction between the computed field and its
SPH approximation.

—u (15)

2.2.1. Continuity equation
Utilizing relation (10), the SPH formulation of the continuity Eq.
(13) arises to the following form

d
an - 7@aZub VoWa (). (16)

It is important to note that various ways to express divergence ex-
ist. For example, using the identity

1
V~UE5(V~(QU)—U~VQ)7 (17)

combined with (16), leads to a different SPH form

d
Q“ ZQbuub VaWas (), (18)

where ug, = U, — u,. The advantage of the above form over (16) is
the symmetry with swapping particles a and b. Therefore, in prac-
tice, it is more accurate to use (18).

However, since forms (16) and (18) do not conserve the total
mass of particles explicitly, we decided to use an alternative
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