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a b s t r a c t

Results for the linear thermoconvective stability of a layer of viscoelastic Maxwell fluid are presented. The
stability problem is characterized by taking into account the lower and upper wall thermal conductivities
as well as their thicknesses. This allows more realistic theoretical boundary conditions. A system consist-
ing of a horizontal infinite Maxwell fluid layer confined between two parallel walls perpendicular to grav-
ity is considered. The critical Rayleigh number Rc, the frequency of oscillation xc and the wavenumber kc

were determined for fixed values of the relaxation time constant F and the Prandtl number Pr. The results
are given for a range of wall thermal conductivities and thicknesses. Analytical and numerical solutions
were calculated. Some unexpected results were found in comparison to those of the Newtonian fluid
where the criticality curves become more unstable when the conductivities of the walls change from very
good conductors to very bad conductors.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Thermal convection of viscoelastic fluids may occur in many
experimental set-ups and technological applications such as mate-
rial processing, food and chemical industries. A particular area of
research of growing interest where hydrodynamics of viscoelastic
fluids is involved is that of the flow properties of biomolecules.
In manipulation of biomolecules like DNA, for genome analysis
and other applications, problems related to hydrodynamics arise
and the theory of viscoelastic fluids can be used. Some efforts on
this matter have been done since many years ago such as that of
Bowen and Zimm [1] who determine some viscoelastic properties
of DNA.

Thermal convection appearing in aqueous suspensions of DNA
which behave as viscoelastic fluids (see [2] for example) is a very
complex subject. This is due to a number of physical mechanisms
that contribute or compete to set in convective cells in the suspen-
sion. Krishnan et al. [3] developed a device where Rayleigh convec-
tion is relevant to perform thermally activated chemical reactions
such as polymerase chain reaction (PCR). In this case Krishnan et al.
[3] proposed to replace the conventional thermocyclers by
Rayleigh convection cells that make the device very simple and
of easily assembly in any laboratory. Braun and Libchaber [4]

proposed an efficient mechanism for trapping DNA in solution
through the interaction of thermophoresis and thermoconvection.
A study of the PCR in thermal convection for replication of DNA
was conducted by Braun et al. [5] and by Braun [6]. In a more re-
cent paper the interaction of thermophoresis and thermoconvec-
tion have been studied along with PCR for replication of DNA by
Mast and Braun [7]. Theoretical advances on the hydrodynamics
of this suspensions which exhibit viscoelastic behavior have been
conducted by Sri Krishna [8] and Laroze et al. [9,10].

The aim of this paper is to study how the thermal properties and
geometrical nature of the walls influence the hydrodynamic stabil-
ity of a viscoelastic Maxwell fluid layer. The scenario we propose
here has not been considered nor discussed before. The theory
developed in this work may be significant to complement and
understand the phenomena appearing in the applications.

The linear thermoconvective stability of a viscoelastic Maxwell
fluid layer heated from below is investigated. The constitutive
equation for the Maxwell fluid is used. It has a relaxation time that,
when large, allows for important elastic properties. The physical
problem investigated here is to understand the effect the thermal
conductivity and thickness of the walls has on the instability. In
the case of natural convection in a Newtonian fluid, this influence
was investigated by Metcalfe and Behringer [11], Cerisier et al. [12]
and Howle [13].

Natural convection in viscoelastic Maxwell fluids was first
investigated by Vest and Arpaci [14] and in an Oldroyd fluid layer
by Takashima [15]. In both papers, the temperature boundary con-
ditions are of fixed temperature at the walls.
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The fixed heat flux boundary condition at the walls was inves-
tigated by Kolkka and Ierley [16] for natural convection of a visco-
elastic Oldroyd fluid layer heated from below. Martínez-Mardones
and Pérez-García [17] reported results for the stationary and oscil-
latory convection and a codimension-two point for the case of
fixed temperature at the walls. Several advances in the study of
convection in viscoelastic fluids have been made by Rosenblat [18],
Park and Lee [19,20], Martínez–Mardones et al. [21], Dávalos-Orozco
and Vázquez Luis [22], Martínez–Mardones et al. [23–26] and more
recently by Li and Khayat [27]. Some other advances in coupled
buoyancy and capillary thermoconvection in viscoelastic fluids
have also been made by Dauby et al. [28], Lebon et al. [29] and
Parmentier et al. [30]; and earlier for capillary thermoconvection
alone by Getachew and Rosenblat [31].

The system consists of a horizontal fluid layer between two par-
allel walls which are perpendicular to gravity. The system is char-
acterized by nondimensional parameters such as: the Rayleigh
number R, the Prandtl number Pr, the relaxation time constant F,
the thermal conductivity ratios of the fluid to the lower and upper
walls (XL,XU), the thickness ratios of the lower and upper walls re-
spect to that of the fluid layer (DL,DU), the frequency of oscillation x
and the perturbation wavenumber k. The results presented here
are of great importance because the physical and geometrical
properties of the walls are taken into account. This allows the the-
ory to better simulate the real experimental conditions.

The paper is organized as follows. In Section 2 the formulation
of the problem is given including the governing equations, bound-
ary conditions as well as nondimensional parameters of the prob-
lem. In Section 3 a solution to the eigenvalue problem using
analytical techniques and numerical methods is presented. Finally,
a discussion of the results is presented in the last section.

2. Formulation of the problem

Consider the natural convection in a viscoelastic Maxwell fluid
layer confined between two infinite horizontal walls perpendicular
to gravity. The lower and upper walls have thicknesses (dL,dU) and
thermal conductivities (KL,KU), respectively. The upper surface of
the lower wall and lower surface of the upper wall are located at
z = 0 and z = 1, respectively. The fluid layer has density q, dynamic

viscosity qm (with m being the kinematic viscosity), thermal con-
ductivity KF and thickness dF.

The equations of momentum and energy of the incompressible
Maxwell fluid are linearized and perturbed (see [14,15]). Next, the
rotational operation is taken twice in the momentum equation to
obtain the following system of coupled equations for the
perturbations
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where w is the fluid velocity and h is the temperature. The dimen-
sionless parameters in Eqs. (1) and (2) are F ¼ kj=d2

F the relaxation
time, Pr = m/j the Prandtl number and R ¼ agd3

F ðTBL � TAUÞ=
½mjð1þ DUXU þ DLXLÞ� the Rayleigh number. Dimensionless vari-
ables are obtained by using the following scales: dF for length,
d2

F=j for time, (TBL � TAU)/(1 + DUXU + DLXL) for temperature and
j/dF for velocity. Notice that TBL > TAU.

In the basic state there is no motion in the fluid and the heat
transport is only by conduction. Before perturbation, the main
temperature profiles for the fluid and walls are calculated from
the linear stationary heat diffusion equation d2T/dz⁄2 = 0. These
dimensional solutions satisfy the following thermal boundary con-
ditions. The temperature is constant over the outer surface of each
wall, that is, T�L ¼ TBL at z⁄ = �dL and T�U ¼ TAU at z⁄ = dF + dU. They
satisfy the continuity of temperature and heat flux at the interface
of the fluid with each wall at z⁄ = 0 and dF, respectively. The solu-
tions, in dimensional form, are:
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Lets assume that Ti ¼ T�i � TAU
� �

ð1þ DUXU þ DLXLÞ= TBL � TAUð Þ,
where the subscript i stands for (F,L,U). Then, in nondimensional
form they can be rewritten as

Nomenclature

DL ratio of thicknesses (lower wall/fluid)
DU ratio of thicknesses (upper wall/fluid)
dF depth of fluid layer
dL thickness of lower wall
dU thickness of upper wall
F relaxation time
g acceleration due to gravity
KL thermal conductivity of the lower wall
KF thermal conductivity of the fluid
KU thermal conductivity of the upper wall
k wavenumber
Pr Prandtl number
R Rayleigh number
T�F dimensional fluid temperature profile
T�L dimensional lower wall temperature profile
T�U dimensional upper wall temperature profile
TF dimensionless fluid temperature profile
TL dimensionless lower wall temperature profile
TU dimensionless upper wall temperature profile
TBL temperature below the lower wall

TAU temperature above the upper wall
w velocity perturbation
XL ratio of thermal conductivities (fluid/lower wall)
XU ratio of thermal conductivities (fluid/upper wall)
z⁄ dimensional vertical coordinate
z dimensionless vertical coordinate

Greek symbols
a volumetric expansion coefficient of the fluid
h temperature perturbation
k relaxation time, s
j thermal diffusivity of the fluid, cm2 s�1

m kinematic viscosity, cm2 s�1

q fluid density, g cm�3

x frequency of oscillation

Subscripts
c critical value
L lower
U upper
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