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a b s t r a c t

Linear stability analysis of a fully developed mixed convection flow of air in an annular horizontal duct is
numerically investigated for the radius ratio R = 1.2, a Péclet and a Rayleigh number less than 200 and
6000, respectively. An iterative method is developed to enable the convergence of the dimensionless
parameters to their marginal values at the transition. New mixed convection flows are highlighted that
are highly correlated with those obtained in natural convection problems under the assumption of two
dimensionality. The synthesis of our results on the transitions permits us to build the map of stability
for the steady and established mixed convection flows and clearly shows the occurrence of multiplicity
of solutions for some couples of Rayleigh and Péclet numbers.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Natural, forced and mixed convection in horizontal annuli is a
fundamental issue of interest and has been extensively studied.
This interest stems from the wide range of related engineering
applications such as thermal energy storage systems, heat
exchangers, transmission cables, solar collectors, etc.

Natural convection in differentially heated horizontal annuli in-
spired numerous studies because of the role of curvature on the
birth of thermal instabilities. Although early experimental work
dates from 1931 (Beckmann [1]), it took 40 years to have a quali-
tative description of flows depending on the Grashof number and
radius ratio (Grigull and Hauf [2], Powe et al. [3]). With the in-
crease in computational resources, numerous numerical simula-
tions were carried out, but mainly under the assumption of two-
dimensional flows, invariant in the axial direction. These studies
show that two-dimensional flow, which develops in the form of
two large symmetrical and crescent-shaped cells, undergoes a Ray-
leigh–Bénard instability with the increase in the Rayleigh number,
for radius ratio in the range 1.2 6 R 6 2 (see Petrone et al. [4] for
example). The supercritical flow pattern is then made of one or
two pairs of additional convection rolls located at the top of the
annulus, thereby enhancing heat transfer rate between the cylin-
der walls. However, these two-dimensional flows turn out to be
unstable with respect to three-dimensional perturbations [5–8].

A critical review of buoyancy-induced flow transitions in horizon-
tal annuli can be found in a recent paper by Angeli et al. [9].

Forced convection, and to a lesser extent mixed convection, have
been the subject of many analytical, experimental and numerical
investigations, concerning both the entrance regions (dynamical
and thermal) and the heat transfer for fully developed flows [10].
Graetz [11] (1883), Nusselt [12] (1910) and later on Lévêque [13]
(1928) were interested in the issue of the developing thermal re-
gime for a fluid flowing in the laminar established regime in a pipe
whose walls were maintained at uniform temperature. In this mod-
el, the axial diffusion is neglected, such an assumption is justified
when the Péclet number is sufficiently high (Pe > 100). Based on
similar assumptions, the works of Lundberg et al. [14] and Shah
and London [15] provided a comprehensive study on the establish-
ment of thermal regime in an annular duct for several combinations
of flow conditions and temperature applied at pipe walls. With sim-
ilar assumptions, Kakaç and Yücel [16] studied the laminar flow
heat transfer in annuli with simultaneous development of velocity
and temperature fields. For low values of Péclet number, both axial
diffusion [17,18] and free convection [19,20] become not negligible
in respect of the establishment length value, which is also strongly
affected by thermal conditions applied at the walls. Amongst the
papers dealing with the entrance regions, a few are devoted to
experimental investigations (see for example the recent paper of
Mohammed et al. [21] and references herein). Finally, to our best
knowledge, few numerical studies were focused on the influence
of natural convection in dynamically and thermally fully developed
flows in annular ducts for very low Reynolds number values, and
only for large radii ratios [22].
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Despite these numerous studies, there are still many aspects
that need to be explored or thorough, especially concerning the ef-
fects of an axial flow on the multicellular secondary flows induced
by the buoyancy force in narrow annular spaces. To this aim, a lin-
ear stability analysis of the fully developed flow is performed for
air flowing in an annular pipe of fixed radius ratio R = 1.2. The rest
of the paper is structured as follows. Section 2 is devoted to the
presentation of the governing equations for the basic flow and
the perturbed states. A numerical method, suitable for calculating
the transition thresholds in a plane of Rayleigh number and Péclet
number, is presented. It is built around an iterative method, cou-
pling the calculation of the basic steady flow and determination
of the dominant spectrum of the linearized problem. The iterative
process, involving the wavenumber and Rayleigh number, is based
on approximate Newton methods for which the derivatives are
substituted by simple algebraic relations. Section 3 emphasizes
the close link between our previous works about pure free convec-
tion and the nature of the flow that develops in the cross sections
of fluid flow in mixed convection. The sensitivity of the critical Ray-
leigh number is studied as a function of the Péclet number, and it is
shown that topologies which are linearly unstable in natural con-
vection turn out to be stable in mixed convection. In particular
we show that multiple solutions are simultaneously stable for cer-
tain ranges of the couple (Pe,Ra). Finally, a conclusion is drawn
that highlights the main issues of this work.

2. Equations

2.1. Physical model

The horizontal annular pipe is confined by two co-axial and infi-
nite cylinders of radii rH

i and rH

o > rH

i (Fig. 1). The temperature of
the inner and outer cylinders is kept constant such that
TH rH

o

� �
< TH rH

i

� �
. The fluid flow is assumed incompressible with

constant physical properties except the density in the buoyancy
term. The axial coordinate is scaled by the annulus gap rH

o � rH

i ,
the velocity components by the mean axial velocity �w�, the dynam-
ical pressure by qð�w�Þ2 and the time by rH

o � rH

i

� �
= �w�. We also

introduce the dimensionless temperature difference

T ¼ TH � TH

r

� �
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i
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with TH

r ¼ THðrH
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=2,

and the reduced radial coordinate r ¼ rH � rH

i

� �
= rH

o � rH

i

� �
.

To shorten the writing of equations presented in this article, and
to emphasize the role of two-dimensional flows that develop in
planes transverse to the axis of the cylinders, the partial derivative
operators have been split into an implicit part coupling the radial
and azimuthal directions, and symbolically represented by ‘‘$2d�’’,
‘‘$2d�’’, ‘‘r2

2d’’, ‘‘r2
2d’’ and ‘‘$2d’’, and an explicit part that deals only

with the axial derivatives. Thus, by combining the radial and azi-
muthal components of the momentum equation into a single vec-
torial relation (see Eq. (1b)), we obtain the three-dimensional
Navier–Stokes and energy equations as follows:
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with the following definitions for the two-dimensional operators:

� Divergence of the vector field Xv

$2d � ðXvÞ ¼ @ðfXuÞ
@r

þ @ðgXvÞ
@h

ð2aÞ

� Divergence of the tensorial field v � v

$2d � ðv � vÞ ¼ $2d � ðuvÞ � gv2� �
er þ $2d � ðvvÞ þ guvð Þeh

ð2bÞ

Nomenclature

e3 vertical unit vector pointing upwards
f =gr + 1
g gravity acceleration (m/s2)
i pure imaginary number
k real wavenumber
p pressure
Pe Péclet number, ¼ �w� rH

o �rH

ið Þ
a

Pr Prandtl number, ¼ m
a

r reduced radial coordinate, ¼ rH�rH

i
rH

o �rH

i(r,h,z) cylindrical coordinates
R radius ratio, ¼ rH

o =rH

i
Ra Rayleigh number, ¼ gb T� rH

ið Þ�T� rH

oð Þð Þ rH

o �rH

ið Þ3
macRaðkÞ critical Rayleigh number function of the k

rH

i inner radius (m)
rH

o outer radius (m)
T temperature
v velocity vector, =uer + veh + wez
�w mean axial velocity

Subscripts
0 steady basic solution
c threshold value

k component in the Fourier space
k, k component in the Fourier and Laplace spaces

Superscripts
1st first branch of solutions
2nd second branch of solutions
⁄ dimensional variable

Greek symbols
a thermal diffusivity (m2/s)
b expansion coefficient (K�1)
dv velocity vector for the perturbation, =duer + dveh + dwez

DP constant axial pressure gradient
g relative annular gap, =R � 1
k complex eigenvalue, =kr + iki

kr growth rate
kM

r maximum growth rate
ki pulsation
kM

i pulsation of the complex eigenvalue having kM
r as real

part
m kinematic viscosity (m2/s)
q density (kg/m3)
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