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Abstract

This paper considers a transient heat conduction problem for an infinite medium with two non-overlapping circular cavities. Suddenly
applied, steady Dirichlet type boundary conditions are assumed. The approach is based on superposition and the use of the general solu-
tion to the problem of a single cavity. Application of the Laplace transform results in a semi-analytical solution for the temperature in the
form of a truncated Fourier series. The large-time asymptotic formulae for the solution are obtained by using the analytical solution in
the Laplace domain. The method can be extended to problems with multiple cavities and inhomogeneities.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

This paper presents a semi-analytical solution for a tran-
sient heat conduction problem for an infinite medium con-
taining two circular cavities. This problem occurs in several
engineering applications, for example, heat exchange
between the earth and buried pipes [1], cooling of tunnels
[2], and heat exchange between blood tissue and embedded
blood vessels [3]. The problem is also of interest for model-
ing time-dependent effects due to diffusion processes, such
as unsteady fluid flow [4,5].

As in many other applications, the use of analytical
solutions in transient heat conduction problems is very
beneficial. Such solutions can be used to study possible sin-
gularities, to obtain accurate solution gradients (e.g. heat
fluxes), as well as the asymptotic approximations for the
solutions for small and large values of time. In addition,
knowledge of analytical solutions can provide benchmark
results to test newly developed numerical methods.

The method of solution presented here for a problem of
two circular cavities is based on the use of the analytical
solution to a corresponding problem of a single cavity
and superposition. The single cavity problem has been
extensively studied and various particular solutions are
available in the literature (e.g. [6]). Analytical and semi-
analytical solutions for the case of multiple cavities are
available only for the steady-state case (e.g. [3,6]).

Transient problems with cavities can be solved by gen-
eral purpose numerical methods such as finite element,
finite difference, and boundary element methods combined
with time-marching schemes. For large-time computations
these approaches can be computationally intensive due to
time-marching and large numbers of degrees of freedom.
To efficiently treat the time convolution involved in the
problem several fast numerical techniques have been
recently developed (see e.g. [7–9] and references therein).

A number of numerical methods based on the use of the
Laplace transform (or Fourier transform) have also been
designed to solve transient problems. In such methods
the original transient problem is transformed to a corre-
sponding non-transient problem in the Laplace domain
(or frequency domain), which is easier to solve. After the
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Nomenclature

m
n

� �
binomial coefficient,

m
n

� �
¼ m!

n!ðm�nÞ!

ak intermediate variable, ak ¼ rk=Rk

akðx; sÞ ðN k þ 1Þ-dimensional vector, Eq. (23)
ak

pmðxÞ vector coefficients of the asymptotic expansion
of akðx; sÞ, Eq. (31)

ApmðxÞ coefficients of the asymptotic expansion ofbT ðx; sÞ, Eq. (29)
Akl

n ðsÞ, Bkl
n ðsÞ Fourier coefficients of the boundary valuebT lðx; sÞjLk

ðk 6¼ lÞ, Eq. (13)
AklðsÞ ðN k þ 1Þ-dimensional vector of Fourier coeffi-

cients Akl
n ðsÞ, Eq. (14)

Bp;i
m�i intermediate coefficients, Appendix D

BklðsÞ N k-dimensional vector of Fourier coefficients
Bkl

n ðsÞ, Eq. (14)
bkðx; sÞ N k-dimensional vector, Eq. (23)
bk

pmðxÞ vector coefficients of the asymptotic expansion
of bkðx; sÞ, Eq. (32)

ck
n; dk

n Fourier coefficients of the function UkðukÞ, Eq.
(5)

ck ðN k þ 1Þ-dimensional vector of Fourier coeffi-
cients ck

n, Eq. (14)
dk N k-dimensional vector of Fourier coefficients dk

n,
Eq. (14)

FklðsÞ ðN k þ 1Þ � ðNl þ 1Þ-dimensional matrix ðk 6¼ lÞ,
Eq. (15)

Fkl
pm matrix coefficients of the asymptotic expansion

of FklðsÞ, Eq. (64)
f ðuÞ integrand matrix-function, Section 6.2
GklðsÞ N k � Nl-dimensional matrix ðk 6¼ lÞ, Eq. (15)
Gkl

pm matrix coefficients of the asymptotic expansion
of GklðsÞ, Eq. (65)

Hk steady-state flux, Eq. (28)
IN N � N -dimensional identity matrix
Inð�Þ; Knð�Þ modified Bessel functions [21]
k; l number of the cavity, k ¼ 1; 2 and l ¼ 1; 2
Lk boundary of the kth cavity
M number of steps in the alternating algorithm,

Eqs. (51) and (52)
M0, M1 numbers of terms in asymptotic series (29) and

(44)
mk

0;�1 1� ðNk þ 1Þ-dimensional matrix, Appendix C
Nk number of terms in the truncated Fourier series,

Eq. (10)
nk annihilating vector, Section 5.1
q transform variable, q ¼ ffiffi

s
p

Rk dimensionless ratio of the radius of the kth cav-
ity to the distance q

rk dimensionless radial polar coordinate ¼ ratio of
the distance between point x and the center of
the kth cavity to the distance q

Rk
npm right-hand side matrices in Eq. (82)

s Laplace transform parameter
t dimensionless time, Eq. (1)
t1 minimum specified time instant, Section 6
tn dimensionless time, at which the solution is

computed, Section 6
T ðx; tÞ dimensionless temperature, Eq. (1)
T sðxÞ steady-state temperature, Eqs. (26) and (27)bT ðx; sÞ Laplace transform of T ðx; tÞbT kðx; sÞ solution to the Laplace-transformed problem

containing only the kth cavity, Eq. (9)
u integration variable, Eq. (26)
UkðsÞ ðN k þ 1Þ � ðNk þ 1Þ-dimensional matrix, Eq.

(19)
Uk

pm matrix coefficients of the asymptotic expansion
of UkðsÞ, Eq. (37)eUk

pm matrix coefficients of the asymptotic expansion
of ½UkðsÞ��1, Eq. (34)

ukðsÞ ðN k þ 1Þ-dimensional vector, Eq. (19)
uk

pm vector coefficients of the asymptotic expansion
of ukðsÞ, Eq. (75)

VkðsÞ N k � Nk-dimensional matrix, Eq. (20)
Vk

pm matrix coefficients of the asymptotic expansion
of VkðsÞ, Eq. (38)eVk

pm matrix coefficients of the asymptotic expansion
of ½VkðsÞ��1, Eq. (35)

vkðsÞ N k-dimensional vector, Eq. (20)
vk

pm vector coefficients of the asymptotic expansion
of vkðsÞ, Eq. (76)

x point in the two-dimensional domain
xm point in the two-dimensional domain, at which

the solution is computed, Section 6
Y k

nðsÞ, Zk
nðsÞ unknown Fourier coefficients, Eq. (10)

YkðsÞ ðN k þ 1Þ-dimensional vector of unknowns, Eq.
(14)

ZkðsÞ N k-dimensional vector of unknowns, Eq. (14)

Greek symbols

ak, bk, b intermediate constants, Eq. (55)
c Euler’s constant, c ¼ 0:5772 . . .
d intermediate integration limit, Eq. (50)
dij Kronecker delta symbol
e predefined accuracy level, Eq. (47)
Hðx; sÞ temperature at point x at time s
H0 uniform initial temperature, H0 ¼ Hðx; 0Þ
j constant thermal diffusivity
KpmðxÞ coefficients of the large-time asymptotic series,

Eq. (44)
lk scalar factor, Appendix C
q distance between the centers of the cavities
s time
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