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a b s t r a c t

Lithium-ion batteries are developed rapidly in electric vehicles, whose safety and functional capabilities
are influenced greatly by the evaluation of available capacity. Combined with the evolution trend
description of state of charge from extended Kalman filter and an adaptive switch mechanism, this paper
advances an adaptive chaos genetic algorithm based extended Kalman filter for the state of charge
determination of lithium-ion batteries, where a combined state space model is used for simulating their
dynamics. It combines the advantage of local linear approximation capability from extended Kalman
filter with the global optimal search mechanism from chaos genetic algorithm. The method is applied for
the state of charge determination of lithium-ion batteries, and results of lab tests on physical cells,
compared with model prediction, are presented. Furthermore, the innovation magnitude bound test and
innovation whiteness test are employed for verifying the performance of the proposed method. Results
confirm that the advanced method may quickly evaluate state of charge with high accuracy and has great
robustness without being affected by the uncertain initial value.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

With the great attention to environment pollution and energy
crises, lithium-ion batteries are developed rapidly in electric ve-
hicles (EVs) and hybrid electric vehicles (HEVs) because of their
high energy density, long cycle life, low self-discharge rate and
environmental compatibility. As an integral part of EV battery
management systems [1], the rate capability of lithium-ion batte-
ries is a crucial issue for the commercialization of Lithium batteries
in HV and HEV. Accurate estimation of cell available capacity, which
directly reflects the behavior of battery pack usage, is essential for
the safety and functional capabilities of the whole system.

As a valuewhich is incapable of being detected directly, cell state
of charge (SoC) is usually accessed by a method based on the
characteristics of the battery, such as gravity, potential of hydrogen
(PH), voltage, current and temperature. Many different types of
methods have been developed for that. Electrochemical method [2]
is very accurate, but complex and requires the outstanding
comprehension of cell electrochemical processes, which are usually
modeled with a set of equations consisting of time variant spatial
partial differential equations. Voltage method [3,4] converts a

reading of the battery voltage to the SoC with the known discharge
curve (voltage vs. SoC) of the battery. It's complicated to get accu-
rate available capacity because of not considering the influence of
battery current and temperature. Coulomb counting method cal-
culates SoC by measuring the battery current and integrating it
with time. This method must be re-calibrated on a regular basis
since it suffers from long-term drift and lacks of a reference point.
Impedance based models [5,6] represent each electrochemical
process in the cell by impedance elements in an electrical circuit
through impedance spectroscopy measurements, which require
additional high frequency equipment. Kalman filter, which operates
recursively on streams of noisy input data to produce a statistically
optimal estimate of the underlying system state, is a most common
selection for accessing cell SoC adaptively. Reference [7] employs
one order equivalent circuit model to simulate cell dynamics and
proposes an improved extended Kalman filter (EKF) to access cell
SoC. Reference [8] uses iterated extended Kalman filter to realize
this. Literature source [9] uses discrete wavelet transform (DWM)
based denoising technique for discharging/charging voltage signal,
inverse DWM of the filtered detailed coefficients for signal recon-
struction, and equivalent circuit model (ECM) based SoC estimation
algorithm with EKF for SoC estimation. Reference [10] advances a
combined method to get available capacity which uses recursive
least square (RLS) algorithm to obtain model parameters and UKF
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to access SoC. However, whether extended Kalman filter (EKF)
[7e9] or unscented Kalman filter (UKF) [10e12] based methods,
they rely on the given initial value to a certain extent. Endowed a
more accurate value, the selected method would converge to the
real onemore quickly. Otherwise, model prediction accuracy would
decline and evaluation results might even diverge from the real
value.

Literature source [13] advances an improved particle filter (PF)
based method, which restricts solution space based on a simplified
output equation and adopts adaptive filter gain to accelerate the
convergence process. Reference [14] introduces an integrated SoC
estimator, where recursive least square (RLS) method is used for
parameter identification and PF is used for on-line SoC estimation
based on the prior knowledge given by the adaptive EKF. PF based
methods [13e16] use random particles satisfied with specified
distribution to represent cell available capacity, which accelerate
search process with bigger search region but bring greater
computation complexity. PF based methods perform well in the
foremost prediction steps, but waste unnecessary computation
after the prediction error turns to be low.

In order to overcome the aforementioned downsides, this paper
presents an adaptive chaos genetic algorithm (CGA) based
extended Kalman filter method for the SoC determination of
lithium-ion batteries. A combined state space model, evolved from
electrical circuit equations and experience model [17], is employed
to simulate battery dynamics based on the measured battery pa-
rameters, such as terminal voltage, current and temperature.
Combined with the evolution trend description of SoC from
extended Kalman filter and adaptive switch mechanism, an adap-
tive CGA based extended Kalman filter method is advanced for the
SoC prediction of lithium-ion batteries. Extensive experimental
data is applied to demonstrate the effectiveness of the developed
modeling and estimation scheme.

The remainder of this paper proceeds as follows. In section 2, the
theory development and parameter identification of combined
state space model is presented including the introduction of elec-
trical circuit model, coulomb counting method and experience
model. In section 3, an adaptive CGA based extended Kalman filter
is proposed for the SoC determination of lithium-ion batteries.
Experimental results including innovation magnitude bound test
and innovationwhiteness test to rectify the proposed algorithm are
provided in section 4, followed by the conclusion of this work in
section 5.

2. Combined state space model theory development

Lithium-ion battery is a nonlinear dynamic system. It requires a
precise model to represent its behavior before using Kalman filter
related method to access cell SoC. Besides straightforward for un-
derstand, an effective electrical circuit model can simulate the
entire dynamic electrical characteristics of cell, so this paper em-
ploys an evolved classical one.

2.1. Electrical circuit model

As depicted in Fig. 1, a two-order improved Thevenin circuit

model with two RC networks [18] is employed to describe the dy-
namic characteristics of LiFePO4 battery, such as nonlinear open-
circuit voltage, current, temperature, transient response, hystere-
sis effect and available capacity. In this model, two circuits are
connected by controlled sources. One is the controlled current
source which is controlled by the battery flowing current ðiÞ and is
used to model the cell behavior among SoC, runtime and available
capacity. It uses self-discharge resistor (RselfDis) to characterize the
self-discharge energy loss and full-capacity capacitor (CCapacity) to
represent the available capacity stored in the battery. The other is a
controlled voltage source which is controlled by the open circuit
voltage Voc. It is employed to bridge SoC to the open-circuit voltage
(Voc). The RC parallel network, composed of RTransient_S, CTran-
sient_S, RTransient_L and CTransient_L, is employed to describe the
transient response and hysteresis effect of cell.

2.2. State space model for lithium-ion batteries

Based on the coulomb counting method, cell SoC is usually
defined as the ratio of standard available capacity to the nominal
capacity (CCapacity),

SOCðtÞ ¼ SOC0 �
1

CCapacity

Zt
o

hði±ðtÞ; TðtÞÞi±ðtÞdt (1)

where SOC0 is the initial value, SOC(t) is the cell SoC, and
hði±ðtÞ; TðtÞÞ is cell coulombic efficiency which differs with
charging/discharging current i±ðtÞ and cell temperature TðtÞ at the
time t. Work current i±ðtÞ is assumed to be positive as discharge
current iþðtÞ and negative as charge current i�ðtÞ.

Experience model [17,19] usually describes cell model as

which gives a good description between cell SoC and open circuit
voltage VocðSOCðtÞÞ; but does not characterize the transient
response and hysteresis effect of cell. The vector VðkÞ is the cell
terminal voltage, Kiði ¼ 1;2;3;4Þ is the constant chosen to make
the model fit for the training data set, and R±series is the cell internal
resistancewhich differs with the process of charge or discharge and
is expressed as discharge resistance Rþseries and charge resistance
R�series [19].

If adaptive methods like Kalman filter are adopted for the SoC
determination, cell model represented with state space equations
must be established first. Based on the established SoC definition
equation (1), experience equation (2) and equivalent electrical

Fig. 1. Electrical circuit model for LiFePo4 batteries.

VðtÞ ¼ VocðSOCðtÞÞ � i±ðtÞR±series
¼
h
K0;K1;K2;K3;K4

i
½1; SOCðtÞ;1=SOCðtÞ; lnðSOCðtÞ; lnð1� SOCðtÞÞ�T � i±ðtÞR±series

(2)
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