Accepted Manuscript

Electro-polymerisation and characterisation of PEDOT in Lewis basic, neutral and acidic EMImCl-AlCl₃ ionic liquid

T. Schoetz, C. Ponce de Leon, A. Bund, M. Ueda

PII: S0013-4686(18)30051-3

DOI: 10.1016/j.electacta.2018.01.033

Reference: EA 31015

To appear in: Electrochimica Acta

Received Date: 6 November 2017
Revised Date: 22 December 2017
Accepted Date: 6 January 2018

Please cite this article as: T. Schoetz, C. Ponce de Leon, A. Bund, M. Ueda, Electro-polymerisation and characterisation of PEDOT in Lewis basic, neutral and acidic EMImCl-AlCl₃ ionic liquid, *Electrochimica Acta* (2018), doi: 10.1016/j.electacta.2018.01.033.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Electro-polymerisation and characterisation of PEDOT in Lewis basic, neutral and acidic EMImCl-AlCl₃ ionic liquid

T. Schoetz^{a,*}, C. Ponce de Leon^a, A. Bund^b and M. Ueda^c

^a Faculty of Engineering and the Environment; University of Southampton; Highfield Southampton SO17 1BJ; United Kingdom

> ^b Electrochemistry and Electroplating Group; Technische Universität Ilmenau; Gustav-Kirchhoff-Straße 6; 98693 Ilmenau; Germany

^c Faculty of Engineering; Hokkaido University; Kita-13, Nishi-8, Kita-ku, 060-8628 Hokkaido, Sapporo; Japan

Abstract

This work studied the electro-polymerisation of 3,4-ethylenedioxythiophene (EDOT) and its electrochemical behavior in Lewis acidic, neutral and basic chloroaluminate ionic liquid 1-ethyl-3-methylimidazolium chloride aluminum chloride (EMImCl-AlCl₃) by cyclic voltammetry. It was found that the electro-polymerisation on vitreous carbon only occurs in Lewis neutral EMImCl-AlCl₃ as a dark blue-violet film whereas the electro-polymerisation in a Lewis acidic or basic compositions is not possible due to the interactions between the conductive polymer and the ionic liquid as well as the potential stability limits of the electrolyte. PEDOT films synthesised in Lewis neutral ionic liquid were tested in monomer-free Lewis acidic, basic and neutral EMImCl-AlCl₃ and show different doping and de-doping behavior for chloride ionic species. The PEDOT films in a Lewis neutral composition showed higher doping levels due to the higher potential stability window, up to 2.6 V vs. Al|Al(III) than in a Lewis acidic and basic solutions. Furthermore, it was shown that the doping and de-doping levels are predefined during the electro-polymerisation of PEDOT. The anion doping and de-doping reaction reached 97% reversibility in the neutral composition, which suggests that PEDOT is a suitable electrode material to store charged species in this media and could be used in rechargeable energy storage devices.

Keywords

Conductive polymers; electro-polymerisation; EMImCl-AlCl₃; ionic liquids; PEDOT

E-mail: T.Schoetz@soton.ac.uk.de, Tel: +44 (0) 2380 5989 31, Fax: +44 (0) 2380 5970 51

^{*} Corresponding author.

Download English Version:

https://daneshyari.com/en/article/6604360

Download Persian Version:

https://daneshyari.com/article/6604360

<u>Daneshyari.com</u>