Accepted Manuscript

Bio-template synthesized NiO/C hollow microspheres with enhanced Li-ion battery electrochemical performance

Jiangyang Tian, Qian Shao, Xiaojie Dong, Jinlong Zheng, Duo Pan, Xiyu Zhang, Huili Cao, Luhan Hao, Jiurong Liu, Xianmin Mai, Zhanhu Guo

Journal of the International Society of Unitroductivity

Electrochimica

Acia

Acia

Management of the International Society of Unitroductivity

Acia

Acia

Acia

Society of Unitroductivity

Acia

Acia

Society of Unitroductivity

Acia

Acia

Society of Unitroductivity

Acia

A

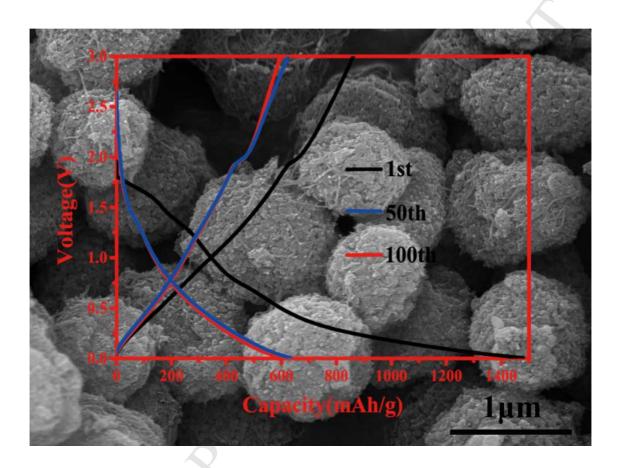
PII: S0013-4686(17)32654-3

DOI: 10.1016/j.electacta.2017.12.094

Reference: EA 30882

To appear in: Electrochimica Acta

Received Date: 5 June 2017


Revised Date: 16 November 2017 Accepted Date: 12 December 2017

Please cite this article as: J. Tian, Q. Shao, X. Dong, J. Zheng, D. Pan, X. Zhang, H. Cao, L. Hao, J. Liu, X. Mai, Z. Guo, Bio-template synthesized NiO/C hollow microspheres with enhanced Li-ion battery electrochemical performance, *Electrochimica Acta* (2018), doi: 10.1016/j.electacta.2017.12.094.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Graphical Abstract

The C/NiO hollow microspheres successfully obtained by using yeasts bio-template and glucose as carbon source have demonstrated higher discharge capacity and better cycle performance as an anode material in Li-ion battery.

Download English Version:

https://daneshyari.com/en/article/6604603

Download Persian Version:

https://daneshyari.com/article/6604603

Daneshyari.com