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a b s t r a c t

We address the problem of two-dimensional heat conduction in a solid slab embedded with a periodic
array of isothermal strips. The surfaces of the slab are subjected to a convective heat transfer boundary
condition with a uniform heat transfer coefficient. Similar to the concept of critical insulation radius,
associated with cylindrical and spherical configurations, we show that there exists a critical insulation
thickness, associated with the slab, such that the total thermal resistance attains a minimum, i.e. a max-
imum heat transfer rate can be achieved. This result, which is not observed in one-dimensional heat con-
duction in a plane wall, is a consequence of the non-trivial coupling between conduction and convection
that results in a 2D temperature distribution in the slab, and a non-uniform temperature on the surface of
the slab. The findings of this work offer opportunities for improving the design of a broad range of engi-
neering processes and products.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

When an isothermal planar surface is covered with insulation,
the total thermal resistance is always increased, and the effect is
to reduce the energy dissipation [1,2]. This result follows logically
as one expects that the increase in the conduction path leads to an
increase in the total resistance. However, in the case of cylindrical
and spherical systems, adding this layer of insulation also increases
the surface area available for heat transfer by convection. As there
are two competing mechanisms that control the total rate of heat
transfer, one expects that there is a critical radius such that the
heat transfer rate is maximized. Indeed, it is a simple exercise to
show that for cylindrical and spherical systems such a critical ra-
dius, where the total thermal resistance attains a minimum, exists
and it is known as the critical insulation thickness [1]. This result is
also applicable for surfaces with variable convection coefficient,
radiation loss and cylinders with transparent insulation [4–6].
The ideas can be also extended to non-circular domains: (i) square
and rectangular domains etc. [2] where, using the shape factor, it is
shown that a more general criterion for maximum heat dissipation
is the critical perimeter of insulation, and (ii) domains with

eccentric circular insulation where the maximum heat loss and
the corresponding optimum insulation configuration must be
found from the solution of the two-dimensional heat conduction
equation with convective boundary condition imposed on the out-
side surface of the insulation [3]. In this work, similar to the latter
approach [3], we show that the concept of critical insulation thick-
ness can be also established for a planar, non-isothermal surface.
The temperature variation is due to a finite, isothermal strip
embedded below the surface that creates a non-trivial interaction
between conduction through the slab and convection heat transfer
from the planar surface.

Heat transfer in the slab-like configurations addressed here, is
of interest in systems with distributed energy sources. In particu-
lar, high performance computing (e.g. laptops and desktop com-
puters) requires multiple CPU units, each of which is a significant
source of thermal energy. Thermal management in these systems
is a topic of active research [7–9]. Moreover, both the problem for-
mulated in this work and the results are relevant to a class of man-
ufacturing processes related to thermal processing or operation of
layered structures: (i) self-curing/bonding of laminate polymer
matrix composites (PMC) where the heat is produced internally
by conductive strips [10–13], and (ii) internal (self) rapid thermal
processing of semiconductor structures through embedded strips
of nanoheaters [14,15]. Besides heat transfer, many problems in
modern science involve the solution of the Laplace equation,
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hence, the results of this study offer opportunities for improving
the design of a broad range of engineering processes and products.

In the next Section 2 we formulate an integral equation associ-
ated with the two-dimensional, heat conduction problem associ-
ated with a slab embedded with a periodic array of finite
isothermal strips, and we obtain a Fredholm integral equation for
the temperature gradient along a strip. The integral equation is
solved both analytically (asymptotically) and numerically. The lat-
ter is discussed in Section 3. The results are also verified through a
finite-element numerical calculation. We summarize our findings
in Section 4.

2. Problem formulation and asymptotic results

Consider two-dimensional heat conduction due to a periodic ar-
ray of isothermal (T1) strips of infinite span, embedded at the center
of a solid slab. The slab is subjected to convection heat transfer along
its upper and lower surfaces as shown in Fig. 1. The strips of length W
are placed a distance L apart. We non-dimensionalize lengths with
the length of the strips (W), and the temperature field by subtracting
T1 and normalizing by the temperature difference (T1�T1). All non-
dimensional variables are denoted by^. In addition, because of sym-
metry, we consider only the upper half of the region, hence the
formulation is also relevant for a periodic array of isothermal strips
embedded in a non-conducting substrate [16].

At steady-state, the temperature distribution is governed by the
Laplace equationr2bT ¼ 0. In view of the symmetry of the problem

in the ŷ direction and periodicity in the x̂ direction, the boundary
conditions are:

On ŷ ¼ 0

bT ½x̂� ¼ 1 along 0 6 x̂ 6 1;

@bT
@ŷ
½x̂� ¼ 0 along 1 < x̂ < bL;

8><>:
On ŷ ¼ bH @bT

@ŷ
½x̂� þ Bi bT ½x̂� ¼ 0;

bT ½x̂ ¼ 0; ŷ� ¼ bT ½x̂ ¼ bL; ŷ�; ð1Þ

where Bi = hW/k defines the Biot number. The mathematical model
along with the boundary conditions are shown in Fig. 2. The solu-
tion depends on the two geometric parameters, bH and bL, and the
Biot number (Bi).

In the next section, using Green’s theorem [17–19], we obtain a
Fredholm integral equation of the first kind for the temperature
gradient along a single strip. This equation is solved numerically,
and asymptotic results for some limiting cases are also developed.

2.1. Green’s theorem formulation and asymptotic results

The objective of this section is to determine, as a function of bL; bH
and Bi, the heat transfer rate (transport rate) from a single strip.
Equivalently, we define the dimensionless shape factor (S) [20],
the total thermal resistance (Rtot) and the overall heat transfer coef-
ficient (U) [1] associated with a single strip as:

S ¼ �z
Z 1

0

@bT ½x̂; ŷ ¼ 0�
@ŷ

dx̂;

Rtot ¼
1

Sk
; ð2Þ

U ¼ Sk
Lz

;

respectively [1], where z is the dimensional span of the strip. Note
that we only consider the upper-half of the domain because of
symmetry.

Nomenclature

Bi Biot number Bi = hW/k (dimensionless)
G Green’s function of the temperature field (dimension-

less)
H one half the thickness of the slab (m)
h convection heat transfer coefficient (W/m2/K)
k thermal conductivity (W/m/K)
L distance between two consecutive strips (m)
Rtot total thermal resistance (K/W)
S shape factor (m)

T temperature (K)
U overall heat transfer coefficient (W/m2/K)
W width of a strip (m)
x, y coordinates of the physical plane (m)
z span of the strip (m)

Diacritic
^ the variable is normalized with the width of

the strip W

Fig. 1. Schematic representation of the physical problem. The surfaces of the slab
are subject to uniform convection, characterized by a heat transfer coefficient h, and
the distance between them is 2H. At the mid-distance there is a two-dimensional,
periodic array of isothermal strips. The width of the strips is W and the distance
between two successive strips is L. The strips are kept at temperature T1.

Fig. 2. Schematic representation of the model problem along with boundary
conditions. The Neumann boundary is dictated by the symmetry of the
configuration.
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