Accepted Manuscript

Title: Control of Cu₂O Film Morphology Using Potentiostatic

Pulsed Electrodeposition

Author: Yiyi Yang Yuning Li Mark Pritzker

PII: S0013-4686(16)31634-6

DOI: http://dx.doi.org/doi:10.1016/j.electacta.2016.07.116

Reference: EA 27731

To appear in: Electrochimica Acta

Received date: 14-4-2016 Revised date: 19-7-2016 Accepted date: 20-7-2016

Please cite this article as: Yiyi Yang, Yuning Li, Mark Pritzker, Control of Cu2O Film Morphology Using Potentiostatic Pulsed Electrodeposition, Electrochimica Acta http://dx.doi.org/10.1016/j.electacta.2016.07.116

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Control of Cu₂O Film Morphology Using Potentiostatic Pulsed Electrodeposition

Yiyi Yang¹, Yuning Li^{1,2} and Mark Pritzker¹*

¹Department of Chemical Engineering, ² Waterloo Institute for Nanotechnology

University of Waterloo, 200 University Avenue West

Waterloo, Ontario, Canada N2L 3G1

Abstract

The formation of Cu₂O films from an alkaline copper-lactate electrolyte using potentiostatic pulse electrodeposition has been conducted. The effects of the frequency, duty cycle, potential amplitude and electrolyte composition during pulsed electrodeposition on the resulting Cu₂O morphology, crystal structure and orientation have been investigated in detail. Comparisons are made with films produced by potentiostatic DC deposition in the same electrolyte. An increase in the pulse frequency or reduction in the duty cycle causes the Cu₂O grains to become less cubic and more spherical as the crystal growth in the <111> direction becomes less dominant and growth in the <100> direction becomes more favored. Higher Cu(II) concentration, lower electrolyte pH and smaller cathodic overpotential have a similar effect and leads to the formation of Cu₂O crystals with distinct or truncated octahedral shapes through pulsed electrodeposition. Overall, the application of a pulsed potential waveform during Cu₂O electrodeposition in alkaline electrolyte enables the formation of Cu₂O films with controllable morphology with lesser need to alter the electrolyte composition or temperature. Keywords: Cu₂O electrodeposition, alkaline, potentiostatic pulses, morphology

* Corresponding author: pritzker@uwaterloo.ca

Download English Version:

https://daneshyari.com/en/article/6605609

Download Persian Version:

https://daneshyari.com/article/6605609

Daneshyari.com