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a b s t r a c t

The results of direct numerical solution of the kinetic equation for the droplet size distribution function
are presented. This method which is not restricted by the Knudsen number was developed using the anal-
ogy with a similar method of solution of the Boltzmann kinetic equation. The simulation of vapor behav-
ior at fast creation of supersaturation state in vapor–gas mixture by means of adiabatic expansion was
carried out for the verification of the method. The results obtained by this method were compared with
those which were obtained by using the method of moments over a broad range of Knudsen number. The
relevance of taking into account the dependence between saturation pressure and droplet size on the
dynamics of condensational relaxation was studied.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Description of bulk condensation kinetics in various devices
includes numerical solution of system of equations for condensa-
tion kinetics and gas dynamics in formulation which corresponds
to solved problem. Apparently, this approach was proposed in
[1]. Results of such solution have concrete character, and in general
they can be applied only to a considered case. Alternative idea,
which was proposed and implemented in [2–4], is choose of such
method of treatment for obtained calculation data in order for
results for simple problem to have general character. In the
mentioned papers a simulation of vapor behavior in a mixture with
non-condensing gas at adiabatic expansion was such simple
problem (statement of a problem is submitted below).

Simulation of bulk condensation of supersaturated vapor was
carried out on the basis of the numerical solution of the kinetic
equation for droplet size distribution function by method of the
moments (see, e.g. [5,6]). The physical kinetics methodology was
used for the analysis of simulation results. Bulk condensation
was considered as a relaxation process (condensation relaxation)
with characteristic time sc, which was determined as a time inter-
val during which initial value of supersaturation ratio decreases by
a factor of e. Use of such approach by analogy with second-order

phase transitions made possible to obtain scaling correlations for
the important characteristics of first-order phase transition, in par-
ticular numerical density of formed droplets nd and time of con-
densational relaxation sc. Also it turned out to be possible to take
into account disturbances of thermodynamic parameters of pro-
cess (temperature and pressure) relative to average values. It was
noted that some time interval existed in beginning of condensation
relaxation, during which new droplets formed with constant
nucleation rate at nearly constant values of temperature and
supersaturation ratio. This time interval was called the induction
period si by analogy to combustion theory. Relation between the
induction period and the nucleation rate was established at initial
values of temperature and supersaturation ratio. In opinion of
authors of [3], obtained relations give a principal possibility for
experimental determination of nucleation rate one more method.
As against many existing methods [7], it can allow to determine
the nucleation rate at that stage when nucleating droplets cannot
be detected by optical methods.

This paper has the following structure. The problem formula-
tion for condensation relaxation of supersaturated vapor in a mix-
ture with non-condensing gas is presented in Section 2. Also the
appropriate system of the equations is presented in Section 2. In
Section 3, the new method offered by authors for solving the ki-
netic equation for droplet size distribution function is described.
In Section 4, the results of application of the method offered by
authors are submitted, and the comparative analysis is given for
obtained results and the solution of the same problem with use
of a method of the moments. The basic deductions on work are gi-
ven in Section 5.
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2. Formulation of the relaxation problem

We considered a mixture of vapor and incondensable gas in an
adiabatically isolated cylinder with a moving plunger. At the initial
time moment, the vapor is in a steady state at the saturation. Then
plunger begins to move, and the velocity of plunger governs the
rate of the vapor–gas mixture expansion and the rate of the vapor
supersaturation development. The motion of plunger in turn deter-
mines the degree of the expansion (the ratio of current volume V to
initial volume V0) and the vapor supersaturation ratio s ¼ pv=ps

1ðTÞ,
where ps

1ðTÞ is the saturation pressure over a flat vapor–liquid
interface. It was shown in [4] that the supersaturation ratio can
be found from following equation:

d ln s
dt
¼ A1

d ln V
dt
� apr2

dndvTA2: ð1Þ

Here

A1 ¼ ðc� 1Þ Llv

RT
� c

c� 1

� �
; A2 ¼ 1þ gv

L
CpT

Llv

RT
� 1

� �
; ð2Þ

where c is the adiabatic index, L is the heat of evaporation, Cp is the spe-
cific heat of the vapor–gas–droplet mixture, vT is the thermal velocity
of vapor molecules, gv is the vapor mass fraction in the mixture, nd is
the droplet-number density, and rd is the average droplet size.

The first term in right part of (1) describes increase of the super-
saturation ratio due to the adiabatic expansion, while the second
one describes decrease of the supersaturation ratio due to vapor
phase depletion (the first term in A2) and to an increase in the tem-
perature caused by the heat of the phase transition (the second
term in A2). Eq. (1) was obtained with use of definition of the
supersaturation ratio, the temperature dependence of the satura-
tion pressure according to the Clausius–Clapeyron equation, the
Poisson adiabatic equation, and the vapor state equation, as well
as the balance equations for energy and number of vapor
molecules:

qRCp
dT
dt
¼ Llv

NA

dnc

dt
; ð3Þ

dnc

dt
¼ �dnv

dt
: ð4Þ

Also it was taken into account that number of vapor molecules
decreased due to their collision with droplets with probability a:

dnv

dt
¼ �apr2

dVTndnv: ð5Þ

Here nv and nc are the number densities of vapor and condensate
molecules, respectively, and NA is Avogadro number. It should be
noted that use of united energy balance equation for both phases
in the form (3) is possible if temperature of droplets is equal to
one of vapor–gas mixture. We call this case further as one-temper-
ature model [2]. This model was used in this paper as well as in [2–
4], and this allowed comparing obtained results.

At such an approach, it is quite possible to account for that
fact that the heat release during condensation occurs on the sur-
face of growing droplets followed by the heat transfer to the gas-
eous phase at a finite rate. In this case, droplets turned out to be
superheated compared with the vapor, thus retarding the pro-
cesses of droplet nucleation and growth. The limits of the varia-
tions in droplet temperature are known. At the lower limit, this
is the temperature that is identical for both phases. At the upper
limit this is the saturation temperature corresponding to the va-
por pressure above droplet (the ‘‘Oswatitsch assumption”). The
one-temperature model is closer to the real situation the higher
the vapor dilution with non-condensing gas and the lower the
coefficient of condensation. Otherwise, the ‘‘Oswatitsch assump-
tion” is close to reality.

The value of ndr2
d in Eq. (1) is virtually the second moment of drop-

let size distribution function. For this reason system of equations,
which describes process of condensational relaxation, should in-
clude corresponding equation for distribution function. This equa-
tion has the following form (see, e.g. [5,6]) for homogeneous
condensation in an immovable medium without coagulation of
droplets:

of
ot
þ oð_rf Þ

or
¼ I

qR
dðr � rcrÞ: ð6Þ

Here f is the mass distribution function of droplet sizes, r is the
droplet radius, _r is the droplet growth rate, I is the nucleation rate,
qR is the density of the vapor–gas–droplets mixture, d is the delta
function, and rcr is the critical droplet radius.

If volume condensation is studied, and then overall characteris-
tics of process are of interest usually. Numerical density of drop-
lets, their average size, mass or volume fraction of liquid can be

Nomenclature

Cp specific heat
D diffusion coefficient
f droplet size distribution function
F velocity distribution function of molecules
g mass fraction
I nucleation rate
J the collision integral
Kn Knudsen number
L evaporation heat
n number density
NA Avogadro number
p pressure
r droplet radius
_r droplet growth rate
R the universal gas constant
s supersaturation ratio
t time
T temperature
vT thermal velocity of molecules
V volume

Greek symbols
a condensation coefficient
c adiabatic index
k mean free path of molecules
l molar mass
n molecular velocity
q density
X moment of distribution function

Subscripts and superscripts
cr critical radius
d parameter of droplets
i node number in the droplet radius grid
j time step number
l parameter of liquid
n order of moment
s parameter in state of saturation
v parameter of vapor
R parameter of vapor–gas–droplets mixture
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