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a b s t r a c t

Weakly nonlinear stability analysis of a thin liquid film falling down a heated inclined plane with linear
temperature variation in the presence of a uniform normal electric field has been investigated within the
finite amplitude regime. A generalized kinematic equation for the development of free surface is derived
by using long wave expansion method. A normal mode approach and the method of multiple scales are
used to investigate the linear and weakly nonlinear stability analysis of film flow, respectively. It is found
that both Marangoni and electric Weber numbers have destabilizing effect on the film flow. The study
reveals that both supercritical stability and subcritical instability are possible for this type of film flow.
It is interesting to note that both the Marangoni and electric Weber numbers have qualitatively same
influence on the stability characteristics but the effect of Marangoni number is much stronger compare
to the electric Weber number. Scrutinizing the effect of Marangoni and electric Weber numbers on the
amplitude and speed of waves it is found that, in the supercritical region amplitude and speed of the non-
linear waves increases with the increase in Marangoni and electric Weber numbers, while in the subcrit-
ical region the threshold amplitude decreases with the increase in Marangoni and electric Weber
numbers. Finally, we obtain that spatially uniform solution is side-band stable in the supercritical region
for our considered parameter range.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The effect of electric field on a thin liquid film produces a class
of problems that has attracted much attention of several research-
ers due to its technological applications. The presence of electric
field introduces additional physical effects on the flow dynamics
such as body force due to a current in conducting fluids and the
Maxwell stress at the free interfaces. In the industrial process elec-
tric field has been used to destabilize the liquid film on the plane.
Kim et al. [1] studied the interaction of an electrostatic field on the
film flowing in an inclined plane. They found that, in the thin film
limit, the effect of electric field occurred in the wave evolution as
an external pressure distribution, which causes destabilizing effect
on the film. It is interesting to note that, they provide a discussion
on the application of their results to a proposed electrostatic liquid
film space radiator. Nonlinear stability of a perfectly conducting
film flowing down an inclined plane in presence of normal electric
field was investigated by González and Castellanos [2]. They
derived a nonlinear evolution equation with a Hilbert transform
type of term within the limit of small Reynolds number and predict
the destabilizing effect of the electric field in the finite amplitude
regime. Recently, Mukhopadhyay and Dandapat [3] extended the

study of González and Castellanos [2] within the regime of large
Reynolds number and confirmed the existence of subcritical unsta-
ble and supercritical stable zones. They have also determined a
critical value of the electric parameters below which the flow
remains stable.

Another set of problems concerns the thermocapillary effect on
the falling film down an inclined plane. The interfacial stress gen-
erated by the surface tension gradient (Marangoni effect) and the
associated modes of instability are known as thermocapillary
instability. Gousiss and Kelly [4] investigated the effect of thermo-
capillarity on a liquid film falling down an inclined uniformly
heated plane by performing a linear stability analysis based on
Orr–Somerfield and linearized energy equation. They found that
a heated wall has a destabilizing effect on the free surface but a
cooled wall stabilizes the flow. Later Miladinova et al. [5] studied
the effect of non-uniform heating of the plane in the finite ampli-
tude regime by long wave expansion method, as a consequence
their study is valid only at a small vicinity of the critical Reynolds
number. To overcome this limitation Kalliadasis et al. [6] have
studied the problem by integral boundary layer method but they
have considered the plane to be uniformly heated. This integral
boundary layer method has an inherent error as it does not accu-
rately predict the behaviour of the film close to criticality, such
as the order of 20% for the critical Reynolds number. Ruyer-quil
et al. [7] studied the problem by higher-order weighted residual
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approach with polynomial expansions for both velocity and tem-
perature field to overcome the limitation about the criticality of
the above problem. In spite of some limitation each study has a
great importance in its own to accelerate the ongoing research in
the respective field. Recently, Mukhopadhyay and Mukhopadhyay
[8] investigated the influence of thermocapillarity on the span of
supercritical/subcritical regimes and showed that it has a strong
effect on the amplitude and speed of the nonlinear waves. The re-
view of the literature confirms that, there is no such study address-
ing the effect of the above two types of problems simultaneously.
In the present study, an attempt is made to consider the combined
effect of uniform normal electric field that at infinity on the flow of
conducting viscous film on an inclined heated plane with linear
temperature variation.

2. Formulation of the problem

Consider a layer of a conducting thin liquid film flows down an
inclined heated plane of inclination h with the horizon under the
action of gravity and an uniform electric field that at infinity and
perpendicular to the unperturbed interface. The co-ordinate sys-
tem is chosen such that x-axis along the flow and z-axis normal
to the inclined plane. We assume that the electrical permittivities
are constant but take different value in different medium. Due to
constant permittivity, the fluid is not coupled to the electric field
in the bulk (Melcher and Taylor [9]). However, electrical parame-
ters suffer discontinuities at the interfacial region only, so interface
experiences the effect of electric field. The governing equations
consist of the continuity equation, Navier–Stokes equation for
the flow of the liquid layer, energy equation for the temperature
field and Laplace equation for the electric field. The governing
equations in dimensional form can be written as:

r � v ¼ 0 ð1Þ
qðvt þ ðv � rÞvÞ ¼ �rpþ qmr2vþ qg ð2Þ
otT þ ðv � rÞT ¼ jr2T; ð3Þ
r2U ¼ 0 ð4Þ

where v = (u,0,v) is the velocity vector, g ¼ ðg sin h;0;�g cos hÞ is
the acceleration due to gravity vector and p, q, m, T denote the pres-
sure, density, kinematic viscosity and absolute temperature, respec-
tively, andr ¼ ðo=ox;0; o=ozÞ. Also j ¼ kT=ðqCpÞ denote the thermal
diffusivity, kT thermal conductivity, Cp the specific heat at constant
pressure of the fluid and U denotes the electric potential. The per-
tinent boundary conditions on the inclined plane (z = 0) and at the
free surface ðz ¼ hðx; tÞÞ are:

No-slip condition at the plane:

v ¼ 0 at z ¼ 0; ð5Þ

law of temperature variation of the plane:
T ¼ Tg þAx at z ¼ 0; ð6Þ
kinematic boundary condition:

othþ ðv � rÞðh� zÞ ¼ 0 at z ¼ h; ð7Þ
condition that the liquid is grounded perfect conductor:

U ¼ 0 at z ¼ h; ð8Þ

continuity of the shear stress:

½½n � s � t�� ¼ rrðTÞ � t at z ¼ h; ð9Þ

continuity of the normal stress:

½½n � s � n�� � ½½p�� ¼ �rðTÞr � n at z ¼ h; ð10Þ

Newton’s law of cooling:

kTrT � nþ kgðT � TgÞ ¼ 0 at z ¼ h; ð11Þ

where Tg denotes the temperature in the gas phase,A ¼ ðTH � TCÞ=l0,
where TH and TC denote the temperatures at hotter part and the
colder part, respectively, along the inclined plane and l0 the charac-
teristic longitudinal length scale whose order may be considered
same as the wave length k. In this study, we have taken the tempera-
ture T is increasing in the stream-wise direction and hence A is posi-
tive. Alsor(T) is the surface tension of the liquid, kg is the heat transfer
coefficient between the liquid and air and [[*]] denotes a jump in the
quantity as the interface is crossed from the liquid to vacuum region.
n and t are the normal and tangent vectors pointing outward to the
interface, respectively, and the stress tensor s is given by

s ¼ sf þ se

where the viscous stress tensor

sf
ij ¼ qm

oui

oxj
þ ouj

oxi

� �
and the electrical (Maxwell) stress tensor

se
ij ¼ �m EiEj �

1
2

EkEkdij

� �
;

where �m is the permittivity of the concerned medium.
Further we have uniform normal electric field far from the

surface, which gives

Uz ! E0 as z!1; ð12Þ

where E0 is the basic uniform normal applied electric field and at
the free surface ðz ¼ hðx; tÞÞ as another boundary condition.

The above equations are quite general regarding various coeffi-
cients (kT, j, l, r, etc.). It is well known that temperature variation
in the fluid can cause dramatic changes in the above coefficients,
but approximations can be made depending on the type of the
problem being examined. In the foregoing analysis, we have as-
sumed the variation of surface tension as

rðTÞ ¼ r0 � cðT � TgÞ; ð13Þ

where r0 is the surface tension at Tg, the temperature in the gas
phase, which is taken as the reference temperature and
c ¼ �or=oTjT¼Tg

is a positive constant for most common fluids.
The assumption of linear variation of surface tension with temper-
ature is very much compatible with the experimental data. Apart
from water [8,10] there are many liquids [11] which follow the lin-
ear variation of surface tension with the temperature scales. For
example, the molten tin (Sn) in the range of 520–1670 K and molten
zirconium (Zr) in the range 2000–2250 K follow the law

rðTÞ ¼ 561:6� 0:103ðT � 505Þm Nm�1 and

rðTÞ ¼ 1543� 0:66ðT � 2128Þm Nm�1;

respectively. It is to be noted here that both the liquids are highly
conducting.

To express the governing equations and boundary conditions in
non-dimensional form, we shall assume two length scales l0 and h0

as the characteristic measure for the length in longitudinal and trans-
verse direction, respectively; l0 may be assumed as one wave length
and h0 is the mean depth of the film, which gives l0� h0. Further to
measure the transverse length in the vacuum, which extend to infin-
ity, h0 is not a proper scale, so we shall consider l0 as the measure of
the transverse length in the vacuum. The Nusselt velocity
u0 ¼ gh2

0 sin h=3m will be assumed as the characteristic velocity along
the longitudinal direction. We define the dimensionless quantities as

x ¼ l0x�; h ¼ h0h�; z ¼ h0z� ðin liquidÞ;
z ¼ ðl0=h0Þf ðin vacuumÞ; t ¼ ðl0=u0Þt�; u ¼ u0u�;

v ¼ ðh0=l0Þu0v�; p ¼ qu2
0p�; T ¼ Tg þ T�ðTH � TCÞ;

U ¼ E0h0U
�: ð14Þ

710 A. Mukhopadhyay, A. Mukhopadhyay / International Journal of Heat and Mass Transfer 52 (2009) 709–715



Download	English	Version:

https://daneshyari.com/en/article/660609

Download	Persian	Version:

https://daneshyari.com/article/660609

Daneshyari.com

https://daneshyari.com/en/article/660609
https://daneshyari.com/article/660609
https://daneshyari.com/

