Accepted Manuscript

Title: Design and construction of three-dimensional flower-like CuO hierarchical nanostructures on copper foam for high performance supercapacitor

Author: Dong He Shuangxi Xing Bangning Sun Hao Cai Hui

Suo Chun Zhao

PII: S0013-4686(16)31288-9

DOI: http://dx.doi.org/doi:10.1016/j.electacta.2016.05.196

Reference: EA 27420

To appear in: Electrochimica Acta

Received date: 9-4-2016 Revised date: 16-5-2016 Accepted date: 29-5-2016

Please cite this article as: Dong He, Shuangxi Xing, Bangning Sun, Hao Cai, Hui Suo, Chun Zhao, Design and construction of three-dimensional flower-like CuO hierarchical nanostructures on copper foam for high performance supercapacitor, Electrochimica Acta http://dx.doi.org/10.1016/j.electacta.2016.05.196

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Design and construction of three-dimensional flower-like CuO

hierarchical nanostructures on copper foam for high performance

supercapacitor

Dong He, a Shuangxi Xing, b Bangning Sun, a Hao Cai, a Hui Suo and Chun Zhao and Chun

^{a.} State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University,

Changchun, 130012, People's Republic of China.

b.Faculty of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China. E-mail:

xingsx737@nenu.edu.cn

Corresponding author: Chun Zhao

E-mail: zchun@jlu.edu.cn

Abstract

We have developed a simple and cost-effective one-step surface oxidation

method to synthesize three-dimensional (3D) flower-like, similar to that of a blooming

chrysanthemum, CuO hierarchical nanostructures directly on a copper foam, which is

acting as the Cu source and the current collector. The as-prepared sample can be

directly used as a binder-free electrode for supercapacitors. Benefiting from the novel

synthesis strategy and the 3D connect/quasi-connect structures, the as-prepared

CuO/copper foam electrode can provide massive active sites for redox reactions, high

electronic conductivity, short diffusion pathway for ions and effectively electrolyte

penetrating. These characteristics together with the synergy effect between CuO and

copper foam substrate lead to a high capacitance of 1641.4 mF cm⁻², good rate

capability (77.2% retention upon increasing the current density by 10 times) and good

1/25

Download English Version:

https://daneshyari.com/en/article/6607022

Download Persian Version:

https://daneshyari.com/article/6607022

<u>Daneshyari.com</u>