Accepted Manuscript

Title: Strongly coupled hybrid ZnCo₂O₄ quantum dots/reduced graphene oxide with high-performance lithium storage capability

Author: Wei Yao Yi Dai Kang Ge Juhua Luo Qingle Shi

Jianguang Xu

PII: S0013-4686(16)31319-6

DOI: http://dx.doi.org/doi:10.1016/j.electacta.2016.06.002

Reference: EA 27441

To appear in: Electrochimica Acta

Received date: 12-4-2016 Revised date: 24-5-2016 Accepted date: 1-6-2016

Please cite this article as: Wei Yao, Yi Dai, Kang Ge, Juhua Luo, Qingle Shi, Jianguang Xu, Strongly coupled hybrid ZnCo2O4 quantum dots/reduced graphene oxide with high-performance lithium storage capability, Electrochimica Acta http://dx.doi.org/10.1016/j.electacta.2016.06.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Strongly coupled hybrid ZnCo₂O₄ quantum dots/reduced graphene oxide with

high-performance lithium storage capability

Wei Yao,* Yi Dai, Kang Ge, Juhua Luo, Qingle Shi, and Jianguang Xu*

School of Materials Engineering, Yancheng Institute of Technology, 211 East Jianjun

Road, Yancheng, Jiangsu 224051, People's Republic of China

E-mail: xiaoniu1981@126.com; jgxu@163.com

ABSTRACT: Mesoporous binary metal oxides/reduced graphene oxide (rGO)

two-dimensional nanostructures can provide open large surface areas for lithium ion

access and storage, holding a great promise as high-performance electrode materials

for next-generation energy storage. In this work, we develop an effective strategy

involving a simple polyol process and a facile thermal annealing treatment, to

synthesize ZnCo₂O₄ Quantum Dots (QDs)/rGO hybrid. Due to the large specific

surface area, strongly coupled interaction and synergic effect between ZnCo₂O₄ QDs

and rGO, the hybrid shows excellent lithium storage ability, with high reversible

specific capacity, and superior rate performance, as well as ultralong cycle life. After

100 cycles, the ZnCo₂O₄ QDs/rGO₂ delivers a capacity of 1062 mAh g⁻¹ at a current

density of 500 mA g⁻¹. Even cycling at 2000 mA g⁻¹ up to 1000 cycles, the reversible

capacity still preserves 682.5 mAh g⁻¹. These electrochemical results indicate the

ZnCo₂O₄ QDs/rGO₂ hybrid could be a promising candidate material as a

high-performance anode material for lithium-ion batteries.

Keywords: ZnCo₂O₄ quantum dots; reduced graphene oxide; anode materials;

synergic effect; Li-ion battery

1

Download English Version:

https://daneshyari.com/en/article/6607099

Download Persian Version:

https://daneshyari.com/article/6607099

<u>Daneshyari.com</u>