Accepted Manuscript

Title: A high-performance, bifunctional oxygen electrode catalysed with palladium and nickel-iron hexacyanoferrate

Author: R.D. McKerracher H.A. Figueredo-Rodríguez C.Ponce de León C. Alegre V. Baglio A.S. Aricò F.C. Walsh

PII: S0013-4686(16)30927-6

DOI: http://dx.doi.org/doi:10.1016/j.electacta.2016.04.090

Reference: EA 27125

To appear in: Electrochimica Acta

Received date: 30-1-2016 Revised date: 16-4-2016 Accepted date: 18-4-2016

Please cite this article as: R.D.McKerracher, H.A.Figueredo-Rodríguez, C.Ponce de León, C.Alegre, V.Baglio, A.S.Aricò, F.C.Walsh, A high-performance, bifunctional oxygen electrode catalysed with palladium and nickel-iron hexacyanoferrate, Electrochimica Acta http://dx.doi.org/10.1016/j.electacta.2016.04.090

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

A high-performance, bifunctional oxygen electrode catalysed with palladium and nickel-iron hexacyanoferrate

R.D. M^cKerracher^a, H.A. Figueredo-Rodríguez^a, C. Ponce de León^{a*}, C. Alegre^b, V. Baglio^b, A.S. Aricò^b, F.C. Walsh^a

^aElectrochemical Engineering Laboratory, Engineering Sciences, Faculty of Engineering and the Environment, University of Southampton, Highfield, Southampton, SO17 1BJ, UK

^bConsiglio Nazionale delle Ricerche, Istituto di Tecnologie Avanzate per l'Energia " Nicola Giordano", Salita S.Lucia sopra Contesse, 5. 98126 Messina, Italy

Highlights

- A bifunctional O₂ electrode with Pd/C & Ni/Fe catalysts is characterised.
- The mixed catalyst showed low overpotentials and operates at high current density.
- The electrode was functional at a current density up to 1,000 mA cm⁻².
- 3,000 cycles for the O₂ electrode at 150 mA cm⁻² and low overpotentials.

Abstract

The development of air-breathing cathodes, which utilise atmospheric oxygen, enables the construction of lightweight, high energy density metal-air batteries and fuel cells. Air electrodes can be very lightweight and thin because the active material, oxygen, does not need to be stored inside the cell. However, air electrodes are restricted by poor reaction kinetics and low activity of many catalysts towards the oxygen evolution and reduction reactions. In addition, it is a challenge to maintain chemical and mechanical stability of the catalyst and supporting materials at oxidising currents under the strong alkaline conditions commonly used, and gas evolution. This paper reports a novel bifunctional oxygen electrode with remarkable stability, able to perform at current densities up to 1,000 mA cm⁻² and withstand 3,000 cycles continuously. The electrode is catalysed by a mixture of Pd/C and mixed nickel-iron hexocyanoferrate, which have high activities towards the ORR and OER reactions, respectively.

Download English Version:

https://daneshyari.com/en/article/6607190

Download Persian Version:

https://daneshyari.com/article/6607190

<u>Daneshyari.com</u>