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a b s t r a c t

The effect of viscous dissipation on parallel Darcy flow in a horizontal porous layer with an adiabatic
lower boundary and an isothermal upper boundary is discussed. The presence of viscous dissipation
serves to cause a nonlinear temperature profile within the layer. The linear stability of this nonisothermal
base flow is then investigated with respect to the onset of convective rolls. The solution of the linear
equations for the perturbation waves is determined analytically by a power series method, and the
results are confirmed using a direct numerical approach using a fourth order Runge Kutta method. The
neutral stability curve and the critical value of the governing parameter R ¼ GePe2 are obtained, where
Ge is the Gebhart number and Pe is the Péclet number. The effect of an imperfect isothermal boundary
condition at the upper boundary is investigated by considering finite values of the Biot number.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The onset of convection in a horizontal fluid-saturated porous
layer heated from below has been widely studied in the last few
decades. The interest in this subject is related both to geophysical
research and to engineering design. Possible applications include
the analysis of water currents in a porous rock, the underground
spread of pollutants, the enhancement of the performance in build-
ing insulation, solar energy collectors and solar ponds. Wide and
detailed discussions of the literature on this subject can be found
in the book by Nield and Bejan [1] and the reviews of Rees [2]
and Tyvand [3].

The early papers of Horton and Rogers [4] and Lapwood [5] pre-
sented the first linearised stability analyses of what has become
known widely as either the Horton–Rogers–Lapwood (HRL) prob-
lem or the Darcy–Bénard (DB) problem. The former links us to
the pioneers of stability theory in porous media, while the latter
emphasizes the strong link with the Rayleigh-Bénard problem.
The classical DB problem consists of a basic motionless state with
a uniform temperature drop across the layer with warmer fluid ly-
ing below cooler fluid.

Very many authors have developed variants of this basic stabil-
ity problem either by employing porous models that are more
complicated than Darcy’s law, or by altering the external condi-
tions, such as imperfectly conducting boundaries or the presence
of internal heating, rotation or vertical throughflow. Of most inter-
est here is the study of Prats [6] who investigated the effect of a
uniform parallel basic flow in the layer which might be caused
by applying a uniform horizontal pressure along the layer. By using
a moving frame of reference Prats proved that this uniform basic
flow does not alter the condition for the onset of instability. In
Prats’ treatment, the critical value of Rayleigh number, Racr, is
the same as in the DB problem, viz. 4p2. Moreover, the full nonlin-
ear equations, when written in the moving frame, reduce to those
which apply when there is no basic flow. Therefore, the full nonlin-
ear behaviour of the DB problem is recovered in an infinitely long
layer. One other consequence is that there is no preferred direction
for the roll orientation at onset, a property which it does not share
with Bénard–Poiseuille convection.

With regard to what we shall call the Darcy–Bénard–Prats
(DBP) problem, there exist some recent papers which have ex-
tended the work of Prats [6]. Rees [7] considered the effect of qua-
dratic form drag in the momentum equation. He showed that the
critical Darcy–Rayleigh number, Racr, depends on both the form
drag coefficient and on the base flow velocity. Moreover, the
critical Darcy–Rayleigh number is also dependent on the roll orien-
tation, with longitudinal rolls forming the preferred pattern. The
additional effects of lateral confinement were considered by
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Delache, Ouarzazi and Néel [8]; these authors found discontinuous
transitions between preferred roll states. Postelnicu [9] extended
the work of Rees [7] by combining it with the work of Banu and
Rees [10], who employed the two-temperature model for heat con-
duction. This model involves an inter-phase heat transfer coeffi-
cient to account for the absence of local thermal equilibrium
between the solid and fluid phases. A comprehensive set of results
is presented by Postelnicu [9] showing the detailed effect on the
critical Darcy–Rayleigh number and wavenumber of the inertia
parameter, the flow rate and the three parameters that are associ-
ated with local thermal nonequilibrium.

The aim of the present paper is to consider the following variant
on the DBP problem. In the above-cited works thermoconvective
instability was driven by an unstable temperature gradient that
is imposed externally. In the present paper we shall assume that
there is no imposed temperature gradient across the layer, but
rather that heat is generated internally by the action of viscous dis-
sipation. In particular the upper surface will be taken to be isother-
mal (infinite-Biot number), while the lower surface is thermally
insulated. The former boundary condition is relaxed later in the pa-
per by using a finite-Biot-number condition to represent external
heat transfer to the ambient temperature.

A linear stability analysis of oblique rolls which are orientated
arbitarily with respect to the uniform base flow direction is per-
formed. The disturbance equations are solved both analytically
by a series method and numerically by a fourth order Runge Kutta
method. We present information on how the critical Darcy–Ray-
leigh number and wavenumber vary with the Gebhart and Péclet
numbers. Asymptotic expressions for the critical quantities vs the
Péclet number are obtained.

2. Mathematical model

We shall consider laminar buoyant flow in a horizontal parallel
channel with height L (see Fig. 1). Both the Darcy model and the
Boussinesq approximation are invoked. The components of seep-
age velocity along the �x-, �y- and �z-directions are denoted by �u, �v
and �w, respectively. The lower boundary wall �y ¼ 0 is assumed to

be adiabatic, while the upper boundary wall �y ¼ L is supposed to
be isothermal with temperature Tw. Both boundary walls are
impermeable. Later in the paper we relax the assumption of having
a perfectly conducting upper boundary.

The governing mass, momentum and energy balance equations
can be expressed as
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where r is the ratio between the average volumetric heat capacity
ðqcpÞm of the porous medium and the volumetric heat capacity
ðqcpÞf of the fluid. Eq. (2) has been obtained by combining the �x-
component and the �y-component of Darcy’s law in order to remove
the explicit dependence on the pressure field; Eqs. (3) and (4) were
obtained in a similar manner.

Nomenclature

a nondimensional wave number, Eq. (28)
An nth series coefficient, Eq. (36)
Bi Biot number, hL=k
cp specific heat at constant pressure
cwave nondimensional phase velocity, Eq. (35)
g modulus of gravitational acceleration
g gravitational acceleration
G nondimensional parameter, Ge ðcos vÞ2
Ge Gebhart number, Eq. (13)
h external heat transfer coefficient
K permeability
k thermal conductivity
L channel height
Ln differential operator, Eqs. (A11), (A12)
n integer number
P nondimensional parameter, Pe= cosv
Pe Péclet number, Eq. (16)
R nondimensional parameter, GePe2

R real part
s unit vector parallel to the base flow direction
t nondimensional time, Eq. (7)
T nondimensional temperature, Eq. (7)
Tw upper boundary temperature or external temperature
u; v;w nondimensional velocity components, Eq. (7)

U;V ;W nondimensional velocity disturbances, Eq. (17)
�uB base flow velocity
x; y; z nondimensional coordinates, Eq. (7)

Greek symbols
a thermal diffusivity
b volumetric coefficient of thermal expansion
c reduced exponential coefficient, Eq. (29)
� nondimensional parameter, Eq. (A3)
h nondimensional temperature disturbance, Eq. (17)
HðyÞ nondimensional function, Eq. (28)
k exponential coefficient, Eq. (28)
k1; k2 real and imaginary parts of k
m kinematic viscosity
q mass density
r heat capacity ratio
v angle between base flow direction and x-axis
w nondimensional streamfunction, Eq. (24)
WðyÞ nondimensional function, Eq. (28)

Superscript, subscripts
– dimensional quantity
B base flow
cr critical value
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Fig. 1. Sketch of the horizontal porous channel.
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