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Abstract

Peculiar oscillating convection is observed when two-dimensional double-diffusive convection in porous medium is analysed numer-
ically. The top and bottom walls of an enclosure are insulated, and constant and opposing heat and mass fluxes are prescribed on the
vertical walls. The peculiar oscillations are of three types: (1) Chaotic oscillations wherein the main flow is due to temperature; however,
the convection due to concentration is strong enough to generate this peculiar oscillation. (2) The ‘sudden steady state case’ caused by the
shifts from thermally-driven to concentration-driven forces. (3) The ‘re-oscillation case’ caused by the convection pattern changes from

centrosymmetric to non-centrosymmetric.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Double-diffusive convection in porous medium, which
occurs because of temperature and concentration differ-
ences, is observed in many disciplines, for example, electro-
chemistry, geophysics, etc. [1-3]. Because heat and mass
transfers in a membrane influence the reaction [4], it is
important to understand the double-diffusive convection
in porous media in detail. Various authors have theoreti-
cally and numerically studied the double-diffusive convec-
tion in a fluid-saturated porous enclosure due to the
opposing heat and mass fluxes on vertical walls [5-12]. In
these studies, the numerical calculations yielded oscillatory
solutions [9,10]. In the former paper [9], we performed cal-
culations only when the aspect ratio was 5. Furthermore, it
has been observed that the oscillation pattern of Nusselt
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number Nu changes abruptly with time. In this paper, we
have performed calculations in order to clarify why such
peculiar oscillations occur. By analysing the double-diffu-
sive convection pattern, we intend to elucidate the physical
mechanism responsible for the occurrence of such oscilla-
tions. In conclusion, three distinct kinds of peculiar oscilla-
tions can be observed, and accordingly, the peculiar
oscillations are classified into three types.

2. Problem statements

We consider a two-dimensional vertical enclosure filled
with a homogeneous, fluid-saturated porous medium of
aspect ratio 4. The top and bottom walls are insulated.
Constant heat flux At and mass flux A, are prescribed
through the vertical walls. The governing equations are
as follows: equation of momentum conservation in the
Darcy regime with the Boussinesq approximation, equa-
tion of continuity and equations for the mass and thermal
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Fig. 1. FFT of the time-dependence of Nusselt number when R = 100, Le =20 and 4 = 5.

energy conservation. The velocities, temperature and con-
centration are zero at the initial condition. The buoyancy
ratio is defined by
y o

pA.
where o is coefficient of thermal expansion and f is coeffi-
cient of concentration expansion.

Governing equations are solved numerically with the
boundary and initial conditions by the finite difference
method. No grid point is set on the physical boundaries
(x| =1 and |y| = A). The first and end grid points are
placed at a distance of half a grid space away from the
boundaries. The boundary conditions at the walls are
applied to these points. The numerical scheme used here
is second-order accurate in space and first-order accurate
in time. The matrices are solved under the given boundary
conditions by the conjugate gradient method. For further
details regarding this method, refer to Ref. [8].

In the previous calculations [9], the numerical grids of
62 x 302 were sufficient because we considered only the
simple oscillation case. However, it is necessary to use a
smaller mesh in order to study the peculiar oscillation
problem. We have attempted to calculate when the grid size

(1)

exceeds 62 x 302. The oscillation patterns of Nu are similar
when the grid size exceeds 102 x 502. Therefore, we can
arrive at a solution of sufficient accuracy in the present cal-
culation if we use grids greater than 102 x 502.

In the present study, we performed calculations for the
following cases: the Rayleigh-Darcy number R = 50, 100
and 200; the Lewis number Le =2, 5, 10, 20 and 50; and
the aspect ratio 4 = 2.5 and 5.

3. Results and discussion
3.1. Chaotic oscillation case

Nmin 1s defined as the minimum value of the buoyancy
ratio that generates oscillation. In our previous study [9],
we observed that the oscillation of Nu was very complex
near N,;,; however, the reason for this oscillation pattern
was not clear. Fig. 1 shows the oscillations of Nu and the
corresponding FFT when R =100, Le =20 and 4 = 5. In
this case, Ny, = 0.53. As shown in Fig. la, Nu oscillates
randomly and a clear peak is not observed in the FFT.
From these figures, chaotic oscillation can be observed
when N =0.55. In the previous research [9], we were
unable to determine whether the oscillation of Nu was cha-
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