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a b s t r a c t

The work in this paper deals with the development of momentum and thermal boundary layers when a
power law fluid flows over a flat plate. At the plate we impose either constant temperature, constant flux
or a Newton cooling condition. The problem is analysed using similarity solutions, integral momentum
and energy equations and an approximation technique which is a form of the Heat Balance Integral
Method. The fluid properties are assumed to be independent of temperature, hence the momentum equa-
tion uncouples from the thermal problem. We first derive the similarity equations for the velocity and
present exact solutions for the case where the power law index n ¼ 2. The similarity solutions are used
to validate the new approximation method. This new technique is then applied to the thermal boundary
layer, where a similarity solution can only be obtained for the case n ¼ 1.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Describing the flow of a Newtonian fluid in the boundary layer
above a flat plate is one of the classical problems of fluid mechan-
ics. Since the majority of practical fluids are non-Newtonian the
extension of this theory to such fluids is obviously also a key prob-
lem. Hence, in this paper the flow of a power law fluid past a flat
plate, as well as the associated heat transfer, is examined.

The boundary layer flow of a power law fluid has received much
analytical attention, see [6–8,10–12,16] for example. When dealing
with the momentum boundary layer alone the problem may be
analysed using similarity methods. For the Newtonian case the
governing equations reduce to the Blasius equation: an ordinary
differential equation that is easily solved numerically [26]. For a
power law fluid the reduction of the system via similarity variables
leads to a modified version of the Blasius equation [11,12,25,27].

When the thermal boundary layer is included, due to the differ-
ences in the power of the stress gradient and second derivative of
temperature, a similarity solution is not possible (except in the New-
tonian case). In this case there are two standard ways forward. The
governing equations can be solved numerically, see [2,14,28] for
example, or via integral methods (which will be discussed in detail
later), see [1,6–8]. The accuracy of the latter approach is known to
deteriorate as the fluid becomes less Newtonian, [8,12]. As discussed
by Chhabra [8] the numerical results are more accurate than the
integral methods but the integral methods are useful since they of-
ten lead to closed form solutions. For this reason in the following

work we will examine the integral method approach, with a view
to improving its accuracy.

In Section 2 we derive the governing equations and correspond-
ing integral forms describing the momentum and thermal bound-
ary layers. In Section 3 we discuss the similarity solutions for the
original and integral forms of the momentum equation. It is shown
that both problems have an exact solution for the case where the
power law index n ¼ 2. The numerical solution of the appropriate
ordinary differential equations tends to these solutions as n! 2. In
Section 4 we describe the standard approximation to the momen-
tum equations attributed to von Kármán and Pohlhausen, see [26],
as well as a more accurate method developed by Chhabra [7,8]. We
then demonstrate a variation of the method designed for the anal-
ogous Heat Balance Integral Method that minimises the error
introduced by solving the governing equations only in an integral
sense, see [18,21–23]. After demonstrating the improved accuracy
of the new method we then apply it to the thermal boundary layer
in Section 5 for a constant temperature, a constant flux and New-
ton cooling condition at the plate.

2. General theory

The boundary layer equations for two dimensional steady
incompressible flow are
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where (u,v) is the fluid velocity, U1 is the velocity in the far field
and s is the shear stress. The velocity profile is subject to the bound-
ary conditions

u ¼ v ¼ 0 ð3Þ

at y ¼ 0 and

u ¼ U1 ð4Þ

as y!1. At x ¼ 0 the flow is the far field flow, uð0; yÞ ¼ U1. For a
power law fluid we can set

s ¼ m
@u
@y

���� ����n�1
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@y
; ð5Þ

where m is the consistency index and n > 0.
If the physical properties of the fluid only depend weakly on the

temperature (so that we can assume they are constant) then
the momentum boundary layer can be analysed independently
of the thermal problem. The thermal problem depends on the flow
and for an incompressible fluid is governed by
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where j is the thermal diffusivity and T ! T1 as y!1;
Tð0; yÞ ¼ T1. We will discuss the boundary condition at y ¼ 0 later.

For a Newtonian fluid equations (1)–(6), with the temperature
specified at the plate Tðx;0Þ ¼ Ts, can be examined using a similar-
ity variable, see [9, p311]. However, when n – 1 the similarity
reduction is not possible so we must resort to numerical or approx-
imate solution methods.

A standard approximation is known as the Integral Momentum
Equation (IME), [7]. The IME may be obtained from the boundary
layer equations (1, 2)or via a simple mass and momentum balance
argument, see [7, pp. 345–351], [26, p. 191]. Integrating Eq. (1)
over y 2 ½0;h�, where h is everywhere greater than the boundary
layer thickness leads to
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We can replace v in the integral via Eq. (2) after noting vðx;0Þ ¼ 0.
This leads to a double integral term; changing the order of integra-
tion and integrating once gives
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where s0 is the shear stress in the fluid at y ¼ 0. In the simplest case
U1 is constant and the integral is zero everywhere outside the
boundary layer (since then u ¼ U1) and we may replace the upper

limit of the integral by the unknown boundary layer thickness
d ¼ dðxÞ to find
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This is known as the Integral Momentum Equation (IME). In this
form it holds for both laminar and turbulent flow and no assump-
tion has been made about the nature of the fluid [7]. However, from
now on we will assume that the power law relation, Eq. (5), holds. A
similar analysis on (6) leads to the Integral Energy Equation (IEE)
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where the thickness of the thermal boundary layer dTðxÞ–dðxÞ.
In Section 4, when we develop the approximation method, we

will work with derivative forms of these equations and so denote
G ¼ quðU1 � uÞ; F ¼ uðT1 � TÞ. Then we will use derivative forms
of the integral equations

ðaÞ @G
@x
¼ � @s

@y
ðbÞ @F

@x
¼ �j

@2T
@y2 : ð11Þ

Note, these equations follow from (9,10) by integrating over the
boundary layer. For example, with (11b) we note that
FðdTÞ ¼ TyðdTÞ ¼ 0 and soZ dT ðxÞ
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Eq. (10) then follows immediately.

2.1. Non-dimensionalisation

Using the standard boundary layer scaling for a power law fluid
we set

u ¼ U1û; v ¼ U1
Re1=ðnþ1Þ v̂ ; x ¼ Lx̂; ð13Þ

y ¼ Hŷ ¼ L

Re1=ðnþ1Þ ŷ;
bT ¼ T � Ts

T1 � Ts
; ð14Þ

where U1 is assumed constant, the Reynolds number
Re ¼ qU2�n

1 Ln=m and L is the plate length. Eq. (1) becomes
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where the hats have been dropped. The thermal problem is de-
scribed by

Nomenclature

C drag coefficient
H ¼ L=Re1=ðnþ1Þ height scale
H convective heat transfer coefficient
L plate length
m flow consistency index
n power law index
Re Reynolds number Re ¼ qU2�n

1 Ln=m
Pr Prandtl number Pr ¼ H2U1=ðjLÞ
Q non-dimensional heat flux at y ¼ 0
T fluid temperature
T1 far field temperature
u ¼ ðu;vÞ velocity vector

U1 far field velocity
dðxÞ; dTðxÞ momentum and thermal boundary layer thickness
� ¼ dT=d ratio of boundary layer thicknesses
j thermal diffusivity
q fluid density
s shear stress
n similarity variable

Subscripts
0 value in fluid at substrate y ¼ 0þ

s value at substrate y ¼ 0�
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