Accepted Manuscript

Electrochimica Acta

Title: Carbon-Coated MnMoO₄ Nanorod for High-Performance Lithium-Ion Batteries

Author: Baoqin Guan Weiwei Sun Yong Wang

PII:	S0013-4686(16)30003-2
DOI:	http://dx.doi.org/doi:10.1016/j.electacta.2016.01.008
Reference:	EA 26386
To appear in:	Electrochimica Acta
Received date:	10-12-2015
Revised date:	30-12-2015
Accepted date:	2-1-2016

Please cite this article as: Baoqin Guan, Weiwei Sun, Yong Wang, Carbon-Coated MnMoO4 Nanorod for High-Performance Lithium-Ion Batteries, Electrochimica Acta http://dx.doi.org/10.1016/j.electacta.2016.01.008

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Carbon-Coated MnMoO₄ Nanorod

for High-Performance Lithium-Ion Batteries

Baoqin Guan, Weiwei Sun, Yong Wang*

Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, P. R. China, 200444 *Corresponding authors: Tel: +86-21-66137723; Fax: +86-21-66137725. Email address: yongwang@shu.edu.cn (Y. Wang) Graphical abstract

Abstract

Molybdenum oxysalt is a promising electrode candidate for lithium ion battery due to its flexible composition structure and large Li-storage capacity. An unprecedented MnMoO₄ with a carbon overlayer is synthesized by room-temperature reaction of manganese salt and molybdate, followed hydrothermal treatment with glucose. The rod-like MnMoO₄@C exhibits excellent electrochemical performance as an anode for rechargeable lithium ion batteries. A large reversible capacity of 1050 mAh g⁻¹ can be retained after 200 cycles at a current density of 100 mA g⁻¹. The improved lithium storage performance is attributed to the presence of electrically-conductive carbon coating, which can improve the lithium transportation and alleviate the large volume change of ternary metal oxide during repetitive cycling.

Keywords: MnMoO₄, nanorod, carbon coating, anode, lithium ion batteries

Download English Version:

https://daneshyari.com/en/article/6609429

Download Persian Version:

https://daneshyari.com/article/6609429

Daneshyari.com