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Abstract

In this paper, asymptotic waveform evaluation (AWE) has been successfully used for fast transient characterization of Fourier and
non-Fourier heat conduction. The Fourier and non-Fourier equations are reduced to a system of linear differential equations, respec-
tively, using finite element method and then solved with AWE. Besides providing equivalent accuracy in its solution, it is also shown
that AWE is at least three orders faster in term of computational time as compared to conventional iterative solvers. Its accuracy is also
independent of the time step used and it has the capability of providing local transient solution. However, the moment matching process
in AWE is inherently ill-conditioned and thus may yield unstable response even for stable system. This numerical instability is addressed
and two stability schemes are also successfully implemented to yield stable and accurate solutions from AWE. The limitation of AWE is
also discussed.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Asymptotic waveform evaluation (AWE), which has
been used for fast transient circuit simulation, is based on
the concept of approximating the original system with a
reduced order system. The inspiration of AWE came from
Rubinstein et al. [1], where RC-tree networks were esti-
mated using efficient Elmore delay approach. However,
these estimates were not always accurate. A second break-
through came from the work of McCormick [2], in which
he has used the interconnect circuit moments to form a
lower order circuit models to predict transient responses

accurately. The efforts of these authors lead to the formal-
ization and generalization of AWE algorithms [3,4].

For more than a decade, extensive works on AWE has
been carried out. AWE has been successfully applied for
fast transient circuit simulation [5–7]. AWE also has a lot
of successes in electromagnetic simulations. However, there
are only two papers available on the application of AWE in
transient thermal simulation. Da et al. [8] have published
the first paper on thermal analysis of PCB using AWE
scheme, but the details of incorporating the initial condi-
tions were not addressed. Then, Ooi et al. [9] has success-
fully extended the AWE algorithm to incorporate the
initial conditions. They created a generalized formulation
using the concept of zero state response and zero input
response, which is used in control system. However, Ooi
et al. [9] did not address the inherent numerical instability
of AWE, which may yield incorrect solutions. Both papers

0017-9310/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijheatmasstransfer.2007.03.021

* Corresponding author. Tel.: +60 4 599 5999x6313; fax: +60 4 5941025.
E-mail addresses: ishak@eng.usm.my, ishakusmpp@yahoo.com (I.A.

Azid).

www.elsevier.com/locate/ijhmt

International Journal of Heat and Mass Transfer 50 (2007) 4400–4408

mailto:ishak@eng.usm.my
mailto:ishakusmpp@yahoo.com


also only focused on solving Fourier heat conduction equa-
tion with AWE.

On the other hand, finite element method (FEM) has
been extensively used to solve thermal problems because
it is capable to account for complicated three-dimensional
geometry. Besides that, the governing equations for Fou-
rier and non-Fourier heat conduction are also parabolic
and hyperbolic in nature, respectively, and they are difficult
to be solved analytically. Using FEM, the transient heat
conduction equation (partial differential equation) is
reduced to a set of linear differential equations through
the process of discretization. This set of differential equa-
tions can then be solved in time domain to obtain its tran-
sient solution.

Usually, this set of equations is solved using conven-
tional iterative solvers such as Crank–Nicolson, Runge–
Kutta and the famous Newmark algorithm. These conven-
tional numerical solvers require the whole set of equations
to be solved at each increment of time step, even though
only the solution at a particular node is of interest. Solving
this large set of equations is very time consuming, espe-
cially when the time step required is also very small in order
to yield accurate solutions.

In contrast, AWE is actually approximating the original
system with reduced order system and thus, it is a few
orders faster than conventional iterative solvers in term
of computational time. It is also independent of time step
because it produces the transient solutions in a form of
equation, rather than numerical solutions at every incre-
ment of time step. AWE is also capable of producing local
solution because it can obtain the solution for each node
independently and thus further reducing the amount of
computational time. However, the drawback of AWE is
that the moment matching process in AWE is inherently
ill-conditioned and thus may produce unstable response
even for stable system [10]. Higher order approximation
will lead to a more accurate solution but not always guar-
antee a stable solution.

In this paper, FEM is coupled with AWE to efficiently
solve the transient Fourier and non-Fourier heat conduc-
tion equations. FEM is used to reduce the Fourier (para-
bolic) and non-Fourier (hyperbolic) equations to a set of
first and second order linear differential equations, respec-
tively. AWE is then used to obtain the transient solutions

instead of using conventional iterative solvers. The inher-
ent instability of AWE is also addressed and two stability
schemes are also introduced to yield accurate and yet stable
solution even using higher order approximation.

2. Mathematical model for Fourier and non-Fourier heat

conduction

Classical Fourier’s law is based on diffusion model with
assumption of infinite thermal wave propagation speed,
which leads to simultaneous development of heat flux
and temperature gradient. Classical Fourier’s law also
assumes that instantaneous local thermal equilibrium
occurs between electrons and phonons. In other words,
classical Fourier’s law dictates that the thermal effect is felt
instantaneously throughout the system if the surface of a
material is heated. The governing equation for non-dimen-
sionalized two-dimensional Fourier heat conduction is a
parabolic equation as shown by Eq. (1).

o2h
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þ o2h

oe2
¼ oh
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where h is the dimensionless temperature and b is the
dimensionless time. The dimensionless distance x and y

are represented by d and e, respectively.
After discretizating Eq. (1) with Galerkin’s weighted

residual method, a set of first order linear differential equa-
tions is obtained as given by Eq. (2). The detailed formula-
tions of Eq. (2) can be obtained from Logan [11].

C _hþ Kh ¼ f ð2Þ

where C is known as the capacitive matrix, while K is the
conductivity matrix. f represents the load vector, which
can be time-dependent or time-independent.

Classical Fourier law is sufficient for most heat conduc-
tion phenomena, but it is inadequate to describe rapid
heating response, such as VLSI interconnection heating.
Thus, many non-Fourier heat conduction equations are
proposed by many researchers to account for the finite
thermal wave propagation speed and/or finite relaxation
time to establish local thermal equilibrium between elec-
trons and phonons. The non-Fourier model discussed in
this paper is a two-phase lag model proposed by Tzou

Nomenclature

k residue
M moment
p pole
t time (s)
T temperature (�C)
ZT dimensionless phase lag for temperature gradi-

ent

Zq dimensionless phase lag for heat flux
b dimensionless time
d dimensionless distance x

e dimensionless distance y

h dimensionless temperature
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