
Inverse estimation of surface heating condition in a three-dimensional object
using conjugate gradient method

Jianhua Zhou, Yuwen Zhang *, J.K. Chen, Z.C. Feng
Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA

a r t i c l e i n f o

Article history:
Received 30 October 2009
Received in revised form 22 January 2010
Accepted 22 January 2010

Keywords:
Inverse heat conduction
Laser
Gaussian profile
Conjugate gradient method

a b s t r a c t

Temperature and heat flux on inaccessible surfaces can be estimated by solving an inverse heat
conduction problem (IHCP) based on the measured temperature and/or heat flux on accessible surfaces.
In this study, the heat flux and temperature on the front (heated) surface of a three-dimensional (3D)
object is recovered using the conjugate gradient method (CGM) with temperature and heat flux measured
on back surface (opposite to the heated surface). The thermal properties of the 3D object are considered
to be temperature-dependent. The simulated measurement data, i.e., the temperature and heat flux on
the back surface, are obtained by numerically solving a direct problem where the front surface of the
object is subjected to high intensity periodic laser heat flux with a Gaussian profile. The robustness of
the formulated 3D IHCP algorithm is tested for two materials. The effects of the uncertainties in thermo-
physical properties on the inverse solutions are also examined. Efforts are made to reduce the total num-
ber of heat flux sensors on the back surface required to recover the front-surface heating condition.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

High-Energy Laser (HEL) weapons can remotely deliver high-
power laser at the speed of light onto a military target. It is critical
to know the transient of temperature in the target in order to accu-
rately assess the resulting thermomechanical response. However,
the conventional temperature sensors cannot be used to directly
measure the surface temperature since the sensors can be easily
destroyed or interfere with the laser beam. Similar problems can
be found during reentry of a space vehicle into the atmosphere
as well as in high-power laser manufacturing processes [1]. For
these circumstances, however, the heated surface temperature
can be determined indirectly by solving an inverse heat conduction
problem (IHCP) [2–4] based on the transient temperature and/or
heat flux measured on the back surface.

To formulate the IHCP, either temperature or heat flux at some
locations should be measured to provide information for solving
the ill-posed problem. Between them, temperature is often pre-
ferred because it can be measured with less uncertainty compared
to the heat flux [5–8]. Recent studies, however, have shown that
using the measured heat flux as additional information in an IHCP
can reduce the proneness to the inherent instability of the ill-posed
problem [9,10].

Although the IHCPs have been extensively studied for different
applications in the past decades (e.g., [11–19]), little work has been

done for the inverse numerical algorithm using heat flux measure-
ment data in the objective functional. Furthermore, in HEL weapon
applications, the laser energy may be delivered to the surface in a
periodic way because of the target-spinning or atmosphere varia-
tions. Since the formulation of the IHCP is quite subjective, it is
necessary to determine which formulation is more appropriate
for applications with a periodic heat flux that may pose extra dif-
ficulties in the solution of the inverse problems.

Recently, the authors proposed a stable 1D IHCP formulation to
reconstruct the front-surface heating condition with back-surface
measurement data [20]. After an optimal investigation on the
choice of the boundary condition and objective function variable,
it was demonstrated that the most accurate solution can be ob-
tained by choosing the front-surface heat flux as an unknown func-
tion, using the temperature measurement data as the boundary
condition at the back surface, and employing the heat flux mea-
surement data in the objective function. In Ref. [20] thermophysi-
cal properties were assumed to be constant. In reality, those
properties could vary with temperature during a high-power laser
interaction.

The 1D IHCP model can be applied to the situation that the flat-
top laser beam diameter is much larger than the thickness of the
target. For the case that the laser beam profile is Gaussian and/or
the laser diameter is comparable to the thickness of the target,
the temperature distribution in the target is 3D. The objective of
this paper is to develop a 3D IHCP formulation that can accurately
recover the front surface temperature based on measured temper-
ature and heat flux on the back surface for a target subjected to a
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periodic heat flux on the front surface and with temperature-
dependent thermophysical properties.

2. Model description

To illustrate the methodology of the inverse heat transfer algo-
rithm employed in this study, a three-dimensional object shown in
Fig. 1 is considered. Initially, the object is under a uniform temper-
ature T�0 and then is subjected to a high intensity, Gaussian laser
beam q�laser on the front surface from t* = 0+. The purpose of this

study is to demonstrate the effectiveness and accuracy of the pro-
posed IHCP formulation in reconstructing the observed heat flux
q�1ðy; z; tÞ and temperature T�1ðy; z; tÞ on the front surface of a 3D tar-
get with temperature-dependent thermophysical properties, based
on the measured temperature and heat flux on back surface. Due to
the fact that temperature measurement contains much less errors
compared to the heat flux measurement [5–8], the back surface
temperature Y�TLðy; z; tÞ is used as the boundary condition while
the back-surface heat flux Y�qLðy; z; tÞ is adopted in the objective
function.

Nomenclature

C dimensionless volume specific heat
C* volume specific heat (J/m3 K)
dkðy; z; tÞ dimensionless direction of descent at iteration k, which

is sometimes expressed in vector form dk

f frequency of periodic laser heat flux on front surface
(Hz)

h dimensionless convection heat transfer coefficient
h* convection heat transfer coefficient (W/m2 K)
im total number of heat flux measurements
k dimensionless thermal conductivity
k* thermal conductivity (W/m K)
lc characteristic length (m)
L dimensionless object length in x direction
L* object length in x direction (m)
M dimensionless object length in y direction
M* object length in y direction (m)
N dimensionless object length in z direction
N* object length in z direction (m)
q dimensionless heat flux
q vector form of dimensionless heat flux
qc characteristic heat flux (W/m2)
qlaser dimensionless periodic laser heat flux on front surface
q�laser periodic laser heat flux on front surface (W/m2)
qmax dimensionless maximum heat flux at the laser Gaussian

beam center
q�max maximum heat flux at the laser Gaussian beam center

(W/m2)
q1(y, z, t) dimensionless observed heat flux on front surface which

is sometimes expressed in vector form q1

q�1ðy; z; tÞ observed heat flux on front surface which is sometimes
expressed in vector form q1 (W/m2)

q[L, y, z, t; q1] dimensionless observed heat flux on back surface
Dq[L, y, z, t; dk] dimensionless heat flux variation, which is some-

times simplified as Dq(dk), when the surface heat flux is
perturbation is Dq1(y, z, t) = dk(y, z, t)

r radius measured from laser spot center (m)
S dimensionless objective function
rS½qk

1� dimensionless gradient direction of objective functional
at iteration k

DS½qk
1� dimensionless objective function variation

t dimensionless time
t* time (s)
tc characteristic time (s)
tf dimensionless final time
t�f final time (s)
Dt time step
Dt� time step (s)
T dimensionless temperature
Tc characteristic temperature (K)
T0 dimensionless initial temperature
T�0 initial temperature (K)
T1 dimensionless ambient temperature
T�1 ambient temperature (K)

T1(y, z, t) dimensionless front surface temperature
T�1ðy; z; tÞ front surface temperature (K)
DT½L; y; z; t; dk� dimensionless temperature variation, which is

sometimes simplified as DT, when the surface heat flux
is perturbation is Dq1(y, z, t) = dk(y, z, t)

w dimensionless 1/e radius of Gaussian laser beam
w* 1/e radius of Gaussian laser beam (m)
x, y, z dimensionless spatial coordinate variables
x*, y*, z* spatial coordinate variables (m)
Y(y, z, t) dimensionless measurement data (temperature or net

heat flux) with errors on back surface obtained by
numerical simulations

Yexact(y, z, t) dimensionless measurement data (temperature or
net heat flux) without errors on back surface obtained
by numerical simulations

YqL(y, z, t) dimensionless measurement net heat flux on back sur-
face

Y�qLðy; z; tÞ measurement net heat flux on back surface (W/m2)
YTL(y, z, t) dimensionless measurement temperature on the back

surface
Y�TLðy; z; tÞ measurement temperature on back surface (K)

Greek symbols
a surface absorptivity
bk dimensionless search step size at iteration level k
v dimensionless tolerance used to stop the CGM iteration

procedure
d Dirac delta function
e surface emissivity
/ dimensionless standard deviation of heat flux or tem-

perature measurements
/* standard deviation of heat flux (W/m2) or temperature

(K) measurements
ck dimensionless conjugate coefficient at iteration level k
kðx; y; z; tÞ dimensionless Lagrange multiplier
r a dimensionless quantity related to Stefan–Boltzmann

constant, defined by Eq. (1)
r* Stefan–Boltzmann constant, r = 5.67 � 10�8 W/m2 K4

x a dimensionless random variable having a normal dis-
tribution with zero mean and unitary standard devia-
tion

n dimensionless perturbed variable

Superscripts
* real physical quantities with dimensions
k iteration level

Subscripts
0 initial
f final
q heat flux
T temperature
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