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a b s t r a c t

We study the problem of thermal convection in a horizontal layer of Darcy porous material saturated
with an incompressible Newtonian fluid, with gravity acting downward. The constitutive equation for
the heat flux is taken to be one of Cattaneo type. Care must be taken with the choice of objective deriv-
ative for the rate of change of the heat flux. Here we employ a recent model due to Professor C. Christov as
well as one suggested many years ago by Professor N. Fox. The thermal relaxation effect in both classes of
heat flux law is found to be significant if the Cattaneo number is sufficiently large, and the convection
mechanism switches from stationary convection to oscillatory convection with narrower cells. The tran-
sition point is calculated and the convection thresholds are derived analytically.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Heat propagation via a wave mechanism instead of simply by
diffusion is one of great current interest. Recent studies confirm
this is not simply a low temperature phenomenon, but one which
has potentially important real applications. Mundane applications
of hyperbolic heat propagation are in fields such as skin burns, Dai
et al. [6], chemotaxis, Dolak and Hillen [8], virus spread, Barbera
et al. [1], heat transfer in one of Saturn’s moons, Bargmann et al.
[2], traffic flow, Jordan [11], heat propagation in biological tissues,
Vedavarz et al. [31], Mitra et al. [16], phase changes, Liu et al. [14],
Miranville and Quintanilla [15], food technology, Saidane et al.
[25], and in nanofluids, Vadasz et al. [30]. Other related applica-
tions are discussed in Quintanilla and Racke [22,23], Jordan [12],
Reverberi et al. [24], Straughan [28], chapters 7 and 8, Vadasz
[29], Vadasz et al. [30]. A key way of introducing finite temperature
wave motion has been to use the Cattaneo [3] law for the heat flux.
In thermal convection in a viscous fluid analysis of the Cattaneo
law was initiated by Straughan and Franchi [26], with further work
by Lebon and Cloot [13]. The higher derivative Guyer–Krumhansl
effects were analysed by Franchi and Straughan [10] and by Dauby
et al. [7]. Further work in the area of fluid mechanics employing the
Cattaneo law for the heat flux may be found in the interesting pa-
pers of Puri and Jordan [19,18], and Puri and Kythe [20,21]. Vadasz
[29] investigates whether oscillatory heat motion will be possible
in a block of porous material by employing a dual phase lag theory
for heat conduction. We here continue with such a study by inves-

tigating whether oscillatory motion is possible in a layer of porous
material saturated with a viscous fluid which is heated from below.

The heat flux is a vector field and so the equation governing its
evolutionary behaviour must involve an objective time derivative.
Straughan and Franchi [26] employed an objective time derivative
due to N. Fox and worked with what might be described as a
Cattaneo–Fox theory. Recently, Christov [5] has written a very
interesting paper which revisits the question of which objective
derivative one should employ when dealing with a Cattaneo type
theory for a fluid. He proposes an alternative frame-indifferent
generalization of Fourier’s law with relaxation of the heat flux.
The objective of the current paper is to investigate thermal convec-
tion in a layer of saturated porous material employing Cattaneo-
like heat flux laws. We employ both the Cattaneo–Fox and
Cattaneo–Christov models and compare the results.

2. Equations for porous convection

The equations for thermal convection in a porous medium may
be found in the books by Nield and Bejan [17], or by Straughan
[27,28]. They consist of the balances of linear momentum, mass,
and energy, and these may be written as

v i;t ¼ �
1
q

p;i þ agkiT �
l
qK

v i; ð1Þ

v i;i ¼ 0; ð2Þ
1
M

Tt þ v iT ;i ¼ �Q i;i; ð3Þ

where v i;p; T are the velocity, pressure and temperature fields,
q; a; g; l and K are density, thermal expansion coefficient, gravity,
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dynamic viscosity and permeability, respectively. The quantity Qi is
the heat flux vector, k ¼ ð0;0;1Þ and standard indicial notation is
used throughout. The parameter M is defined below where we de-
rive equation (3).

We now write energy balances for the solid and fluid parts of
the porous medium separately, and additionally write a Cattaneo
heat flux law for the solid and a Cattaneo–Fox heat flux law for
the fluid. This is analogous to the development of the non-Cattaneo
case by e.g. [28, pp. 14–15]. Let Vi be the actual velocity of the fluid
in the pores, let / be the porosity, and set v i ¼ /Vi, v i being the
pore averaged velocity. Denote by subscript s; f the solid and fluid
parts. Then we have the energy balance and Cattaneo law for the
solid,

ðq0cÞsT ;t ¼ � eQ i;i; ð4Þ
ss
eQ i;t ¼ � eQ i � ksT ;i; ð5Þ

where c is the specific heat, ss is the relaxation time, ks is the ther-
mal conductivity, and eQ i is the heat flux. The energy balance in the
fluid and the Cattaneo–Fox heat flux laws may be written, cf. Strau-
ghan and Franchi [26],

ðq0cpÞf ðT ;t þ ViT ;iÞ ¼ �eQ i;i; ð6Þ

sf
eQ i;t þ Vj

eQ i;j �
1
2
eQ jVi;j þ

1
2
eQ jVj;i

� �
¼ �eQ i � kf T ;i; ð7Þ

where cp is the specific heat at constant pressure, kf is the thermal
conductivity, and sf is a relaxation time.

To derive an averaged equation governing the (averaged) porous
media properties, we multiply equation (4) by ð1� /Þ, Eq. (6) by /,
and add, and likewise multiply equation (5) by ð1� /Þ and Eq. (7)
by /, and add. We now define the quantities Q i; ðq0cÞm; km;j;M
and s by

Qi ¼
eQ i

ðq0cpÞf
; ðq0cÞm ¼ /ðq0cpÞf þ ð1� /Þðq0cÞs;

km ¼ /kf þ ð1� /Þks;

j ¼ km

ðq0cpÞf
; M ¼

ðq0cpÞf
ðq0cÞm

; s ¼ /sf þ ð1� /Þss:

Then one shows Eqs. (4)–(7) lead to Eq. (3) and

sQi;t þ sf v jQ i;j �
1
2

Q jv i;j þ
1
2

Qjv j;i

� �
¼ �Qi � jT ;i: ð8Þ

An equivalent derivation to that of Eq. (8), but for the Cattaneo–
Christov heat flux law, Christov [5], yields

sQi;t þ sf ðv jQ i;j � Qjv i;jÞ ¼ �qi � jT ;i: ð9Þ

The complete system of equations for movement and heat propaga-
tion in the fluid in a porous medium therefore consist of (1)–(3)
coupled with either (8) or (9).

The saturated porous medium occupies the horizontal layer
fðx; yÞ 2 R2; z 2 ð0; dÞg and Eqs. (1)–(3) with (8) or (9) hold in the
domain R2 � ð0; dÞ � ft > 0g. The boundary conditions are

w � v3 ¼ 0 on z ¼ 0;d;
T ¼ TL; z ¼ 0; T ¼ TU ; z ¼ d;

ð10Þ

with TL > TU , both constants. The steady solution to (1)–(3) with
either (8) or (9) which satisfies the boundary conditions (10) and
whose stability we are interested in is

�v i � 0; T ¼ �bzþ TL; �Q ¼ ð0;0;jbÞ; ð11Þ

where b is the temperature gradient given by

b ¼ TL � TU

d
:

To analyse the instability of solution (11) we introduce pertur-
bations ðui; h;p; qiÞ such that v i ¼ �v i þ ui; T ¼ T þ h; p ¼ �pþ p;
Qi ¼ Qi þ qi. Then, we linearize and non-dimensionalize with
the scalings xi ¼ x�i d; t ¼ t�Kq=l; p ¼ p�dlU=K; Pr ¼ l=jq; qi ¼

q�i Q ]; Q ]¼jT ]=d; T]¼U
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bd2l=jqKag

q
; Da¼K=d2

; ŝ¼ sf =s, where
U is a velocity scale. The non-dimensional numbers Pr and Da are
the Prandtl and Darcy numbers. Key in this work are the Cattaneo
number, C, and Rayleigh number, Ra ¼ R2, introduced as

C ¼ sj
2d2 ; R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
agd2bKq

lj

s
:

The linearized, non-dimensional equations which follow from
(1)–(3) with (8) are

ui;t ¼ �p;i þ Rkih� ui;

ui;i ¼ 0;
Pr

MDa
ht ¼ Rw� qi;i;

2C
Pr
Da

qi;t ¼ CRŝðui;z �w;iÞ � qi � h;i;

ð12Þ

whereas from (1)–(3) with (9) we derive

ui;t ¼ �p;i þ Rkih� ui;

ui;i ¼ 0;
Pr

MDa
ht ¼ Rw� qi;i;

2C
Pr
Da

qi;t ¼ 2CRŝui;z � qi � h;i:

ð13Þ

To study linear instability of the conduction solution (11) we
write the variables ui; h; qi and p by explicitly separating the time
dependent parts as

uiðx; tÞ ¼ ertuiðxÞ; hðx; tÞ ¼ erthðxÞ;
qiðx; tÞ ¼ ertqiðxÞ; pðx; tÞertpðxÞ:

Then p is eliminated and we put Q ¼ qi;i to reduce (12) or (13) to
studying the system

rDw ¼ RD�h� Dw;

r Pr
MDa

h ¼ Rw� Q ;

2rC
Pr
Da

Q ¼ �kCRŝDw� Q � Dh;

ð14Þ

where D� ¼ @2=@x2 þ @2=@y2 is the horizontal Laplacian, and where
k ¼ 0 for the Cattaneo–Christov theory, whereas k ¼ 1 when the
Cattaneo–Fox model is employed.

The boundary conditions to be used in conjunction with (14) are

w ¼ 0; h ¼ 0; z ¼ 0;1; ð15Þ

and w and h satisfy a plane tiling periodicity in the horizontal vari-
ables x and y.

3. Linear instability, Cattaneo–Fox theory

In this section, we consider equations (14) when k ¼ 1. In the
first instance we consider stationary convection, i.e. when r ¼ 0.
Then one finds from (14),

RD�h� Dw ¼ 0;
Rw ¼ Q ;

ŝCRDw ¼ �Q � Dh:
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