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A meshless model based on radial basis function and method of fundamental solution (RBF-MFS) is
developed to investigate bioheat transfer problems. First, A time-stepping 6-method is used in handling
the time variable in the Pennes bioheat equation. Then, the particular solution is approximated by a linear
combination of radial basis functions, and the homogeneous solution is approximately determined by the
method of fundamental solution. The multi-subdomain RBF-MFS technique is implemented for analysing
problems containing different materials and/or multi-connected regions. The efficiency of the proposed
method is assessed by several examples including normal tissue, tissue with tumor and burned tissue.
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1. Introduction

Thermal methods of temperature measurement at the skin
surface, which require solutions of generalized bioheat equations
under various specific internal and boundary conditions to simu-
late the real case, are becoming recognized as more attractive
than other non-invasive thermometry like MRI, microwave and
ultrasound [1] because they are more economic and safer[2]. Re-
search on the prediction of living tissue temperature has devel-
oped continuously since the Pennes equation was proposed in
1948 [3]. Numerical methods used to solve the Pennes equation
have included the finite difference method (FDM) [4-6], finite ele-
ment method (FEM) [7-11], boundary element method (BEM)
[12,13], dual reciprocity boundary element method (DRMBEM)
[2,14] and Monte Carlo method (MCM) [15,16]. In addition, the
Trefftz FEM [17,18] and meshless method [19] have also been
successfully used to solve transient heat conduction problems.
Among the above methods, the major drawback of FDM appears
to be in its inability to handle effectively the solution of problems
over arbitrarily shaped complex geometries because of interpola-
tion difficulties between the boundaries and the interior points in
order to develop finite difference expressions for nodes next to
the boundaries. FEM is widely used because it can manage com-
plex shapes well, but its main disadvantage is that it requires do-
main discretization which is time-consuming. BEM involves
discretization of the boundary only, which is an important advan-
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tage over FEM, but it has difficulty dealing with transient or non-
homogeneous problems which still need domain discretization.
Fortunately, DRMBEM can overcome this drawback by combining
radial basis functions and conventional BEM to transform domain
integrals to the boundary integral. An alternative numerical
method is MCM, which differs from the classical numerical meth-
ods listed above because it is based on a random process ap-
proach and depends weakly on the dimension of the problem,
providing an alternative way to deal with multidimensional
problems.

Unlike the above approaches, in this paper a meshless RBF-
MFS model is developed by combining radial basis function
(RBF) approaches and the method of fundamental solutions
(MFS) [19,20], to predict the temperature distribution in skin tis-
sue. Firstly, the time dependence in the Pennes equation is re-
moved by a time-stepping process and then the system is
replaced by a set of inhomogeneous modified Helmholtz equa-
tions. Then, RBF approximation and the method of fundamental
solution are employed to construct the particular and the homo-
geneous solution of the modified Helmholtz equation, respec-
tively. The muti-subdomain method is employed to extend this
model to problems with two inhomogeneous domains, such as
skin with tumor, which can induce different frequencies in the
modified Helmholtz equation system. The paper is organized
into the following sections. In Section 2 a detailed numerical
implementation is described and some important points of the
proposed model are discussed. Section 3 provides some numeri-
cal examples which cover typical situations in thermal diagnos-
tics, to demonstrate the effectiveness of the proposed method.
Finally, Section 4 presents some conclusions from the presented
analysis.
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Nomenclature

Alphabetical symbols

c specific heat of tissue (J/kg/°C)

Cp specific heat of blood (J/kg/°C)

h conventional coefficient (W/m?/°C)

k thermal conductivity of tissue (W/m/°C)

M number of collocation points on the boundary
N; number of interpolation points in the domain
Ns number of source points outside the domain
Qm metabolic heat of tissue (W/m?)

Q: spatial heating (W/m?)

Q: sum of metabolic heat and spatial heating (W/m?)
q normal heat flux (W/m?)

t time (s)

u temperature (°C)

U initial temperature (°C)

Ug artery temperature (°C)

Ue environmental temperature (°C)

Uy temperature contact with probe (°C)

Greek symbols

A frequency of the modified Helmholtz equation

o parameter defined in Eq. (19)

B parameter defined in Eq. (28)

Y parameter defined in Eq. (31)

T time step size

o density of tissue (kg/m?)

Ob density of blood (kg/m?)

Wy blood perfusion (m?/s/m? tissue)

0 temporal weighting in time-stepping method

Superscripts

1 subdomain €,

2 subdomain €,

n time level n

n+1 time level n+1

Subscript

| interface boundary between tissue domain and tumor
domain.

2. Numerical method and algorithms
2.1. Pennes bioheat mathematical model

The well-known Pennes equation, which involves the effects of
blood perfusion and metabolic heat generation, is used to simulate
the thermal behaviour of biological tissue [3]:

ou(x,t)
ot

pc =V - [kVu(x,t)] + wpppCpta — u(X, t)] + Qm + Q. (X, t)

(1)

where p, ¢, k are the density, specific heat, and thermal conductivity
of the tissue, respectively; wy, pp, ¢p represent blood perfusion, den-
sity and specific heat of blood, respectively. u, is the arterial tem-
perature which is treated as constant, u(x, t) is the tissue
temperature; Q,, is the metabolic heat generation and Q,(x, t) is
the heat source due to spatial heating. For convenience, a new sym-
bol Q(x, t) = Q(x, t) + Q,, including metabolic heat and special heat-
ing is introduced.

From the Pennes’ equation, it can be seen that the first term on
the right side represents conduction of heat in the tissue, caused by
the temperature gradient. The second term describes the heat
transport between the tissue and microcirculatory blood perfusion.
The third term on the right depicts internal heat generation due to
metabolism and the last term is spatial heating caused by external
heat sources.

Practically, a rectangular area is often used in two-dimensional
bioheat transfer problem (see [2,16,21]). A schematic of the 2D cal-
culation geometry is depicted in Fig. 1

Without losing generality, the following boundary conditions
and initial condition are applied to the four boundaries to make
the system complete:

e Dirichlet/necessary condition

ux,t) =ux,t) ely (2)
e Newman/nature condition
q(x7 t) = Q(Xv t) € Fq (3)

e convective condition
qx,t) = he[u(x,t) —ue] €l 4)
e initial condition

ux,0)=u, €@ (5)

where g represents the boundary normal heat flux defined as
q = —k% and n is the unit outward normal to the boundary I" of
the domain of interest €.

For convenience, boundary conditions (2)-(4) are expressed in a
general form as

B]U(X, t) +qu(X7 t) = B3(x, t) (6)

where By, By, and Bz are known coefficients and can be written
respectively as
X,
b
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Fig. 1. Schematic diagram of computational area.
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