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a b s t r a c t

The Cheng–Minkowycz problem of natural convection past a vertical plate, in a porous medium saturated
by a nanofluid, is studied analytically. The model used for the nanofluid incorporates the effects of
Brownian motion and thermophoresis. For the porous medium the Darcy model is employed. A similarity
solution is presented. This solution depends on a Lewis number Le, a buoyancy-ratio number Nr, a
Brownian motion number Nb, and a thermophoresis number Nt. The dependency of the Nusslelt number
on these four parameters is investigated.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The term ‘‘nanofluid‘‘ refers to a liquid containing a dispersion
of submicronic solid particles (nanoparticles). The term was coined
by Choi [1]. The characteristic feature of nanofluids is thermal con-
ductivity enhancement, a phenomenon observed by Masuda et al.
[2]. This phenomenon suggests the possibility of using nanofluids
in advanced nuclear systems (Buongiorno and Hu [3]).

A comprehensive survey of convective transport in nanofluids
was made by Buongiorno [4], who says that a satisfactory explana-
tion for the abnormal increase of the thermal conductivity and vis-
cosity is yet to be found. He focused on the further heat transfer
enhancement observed in convective situations. Buongiorno notes
that several authors have suggested that convective heat transfer
enhancement could be due to the dispersion of the suspended
nanoparticles but he argues that this effect is too small to explain
the observed enhancement. Buongiorno also concludes that turbu-
lence is not affected by the presence of the nanoparticles so this
cannot explain the observed enhancement. Particle rotation has
also been proposed as a cause of heat transfer enhancement, but
Buongiorno calculates that this effect is too small to explain the ef-
fect. With dispersion, turbulence and particle rotation ruled out as
significant agencies for heat transfer enhancement, Buongiorno

proposed a new model based on the mechanics of the nanoparti-
cle/base-fluid relative velocity.

Buongiorno [4] noted that the nanoparticle absolute velocity
can be viewed as the sum of the base fluid velocity and a relative
velocity (that he calls the slip velocity). He considered in turn se-
ven slip mechanisms: inertia, Brownian diffusion, thermophoresis,
diffusiophoresis, Magnus effect, fluid drainage, and gravity settling.
After examining each of these in turn, he concluded that in the ab-
sence of turbulent effects it is the Brownian diffusion and the ther-
mophoresis that will be important. Buongiorno proceeded to write
down conservation equations based on these two effects.

The problem of natural convection in a porous medium past a
vertical plate is a classical problem first studied by Cheng and
Minkowycz [5]. The problem is presented as a paradigmatic config-
uration and solution in the book by Bejan [6]. The extension to the
case of heat and mass transfer was made by Bejan and Khair [7].
Further work on this topic is surveyed in Sections 5.1 and 9.2.1
in Nield and Bejan [8]. A review of the heat transfer characteristics
of nanofluids has been made by Wang and Mujumdar [9].

In the present paper the model of [4] is applied to the problem
in [5].

2. Analysis

It is assumed that nanoparticles are suspended in the nanofluid
using either surfactant or surface charge technology. This prevents
particles from agglomeration and deposition on the porous matrix.
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We consider a two-dimensional problem. We select a coordinate
frame in which the x-axis is aligned vertically upwards. We con-
sider a vertical plate at y = 0. At this boundary the temperature T
and the nanoparticle fraction / take constant values Tw and /w,
respectively. The ambient values, attained as y tends to infinity,
of T and / are denoted by T1 and /1, respectively.

The Oberbeck-Boussinesq approximation is employed. Homo-
geneity and local thermal equilibrium in the porous medium is as-
sumed. We consider a porous medium whose porosity is denoted
by e and permeability by K. The Darcy velocity is denoted by v.
The following four field equations embody the conservation of to-
tal mass, momentum, thermal energy, and nanoparticles, respec-
tively. The field variables are the Darcy velocity v, the
temperature T and the nanoparticle volume fraction /.

r � v ¼ 0; ð1Þ
qf

e
@v
@t
¼ �rp� l

K
v þ ½/qp þ ð1� /Þfqf ð1� bðT � T1ÞÞg�g; ð2Þ

ðqcÞm
@T
@t
þ ðqcÞf v � rT ¼ kmr2T þ eðqcÞp½DBr/ � rT

þ ðDT=T1ÞrT � rT�; ð3Þ
@/
@t
þ 1

e
v � r/ ¼ DBr2/þ ðDT=T1Þr2T: ð4Þ

We write v = (u, v).
Here qf, l and b are the density, viscosity, and volumetric vol-

ume expansion coefficient of the fluid while qP is the density of
the particles. The gravitational acceleration is denoted by g. We
have introduced the effective heat capacity (qc)m, and the effective
thermal conductivity km of the porous medium. The coefficients
that appear in Eqs. (3) and (4) are the Brownian diffusion coeffi-
cient DB and the thermophoretic diffusion coefficient DT. Details
of the derivation of Eqs. (3) and (4) are given in the papers by
Buongiorno [4], Tzou [10,11] and Nield and Kuznetsov [12,13].
The flow is assumed to be slow so that an advective term and a
Forchheimer quadratic drag term do not appear in the momentum
equation.

The boundary conditions are taken to be

v ¼ 0; T ¼ Tw;/ ¼ /w at y ¼ 0; ð5Þ
u ¼ v ¼ 0; T ! T1;/! /1 as y!1: ð6Þ

We consider a steady state flow.
In keeping with the Oberbeck-Boussinesq approximation and

an assumption that the nanoparticle concentration is dilute, and
with a suitable choice for the reference pressure, we can linearize
the momentum equation and write Eq. (2) as

0 ¼ �rp� l
K

v þ ½ðqp � qf1Þð/� /1Þ þ ð1� /1Þqf1bðT � T1Þ�g:

ð7Þ
We now make the standard boundary-layer approximation, based
on a scale analysis, and write the governing equations
@u
@x
þ @v
@y
¼ 0; ð8Þ
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uþ ð1� /1Þqf1bgðT � T1Þ � ðqp � qf1Þgð/� /1Þ

h i
ð9Þ
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where

am ¼
km

ðqcÞf
; s ¼

eðqcÞp
ðqcÞf

: ð13Þ

One can eliminate p from Eqs. (9) and (10) by cross-differentiation.
At the same time one can introduce a stream function w defined by

u ¼ @w
@y

; v ¼ � @w
@x

; ð14Þ

so that Eq. (8) is satisfied identically.We are then left with the fol-
lowing three equations.
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Nomenclature

DB Brownian diffusion coefficient
DT thermophoretic diffusion coefficient
f rescaled nanoparticle volume fraction, defined by Eq.

(20)
g gravitational acceleration vector
km effective thermal conductivity of the porous medium
K permeability of the porous medium
Le Lewis number, defined by Eq. (27)
Nr buoyancy ratio, defined by Eq. (24)
Nb Brownian motion parameter, defined by Eq. (25)
Nt thermophoresis parameter, defined by Eq. (26)
Nu Nusselt number, defined by Eq. (32)
Nur reduced Nusselt number, Nu/Rax

1/2

p pressure
q00 wall heat flux
Rax local Rayleigh number, defined by Eq. (18)
s dimensionless stream function, defined by Eq. (20)
T temperature
Tw temperature at the vertical plate
T1 ambient temperature attained as y tends to infinity
v Darcy velocity, (u, v)

(x, y) Cartesian coordinates (x-axis is aligned vertically up-
wards, plate is at y = 0)

Greek symbols
am thermal diffusivity of the porous medium, km

ðqcÞf
b volumetric expansion coefficient of the fluid
e porosity
g similarity variable, defined by Eq. (19)
h dimensionless temperature, defined by Eq. (20)
l viscosity of the fluid
qf fluid density
qp nanoparticle mass density
(qc)f heat capacity of the fluid
(qc)m effective heat capacity of the porous medium
(qc)p effective heat capacity of the nanoparticle material

s parameter defined by Eq. (13), eðqcÞp
ðqcÞf

/ nanoparticle volume fraction
/w nanoparticle volume fraction at the vertical plate
/1 ambient nanoparticle volume fraction attained as y

tends to infinity
w stream function, defined by Eq. (14)
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