Accepted Manuscript

Title: Flower-like Nickel Oxide Nanocomposites Anode Materials for Excellent Performance Lithium-ion Batteries

Author: G.H. Yue Y.C. Zhao C.G. Wang X.X. Zhang X.Q.

Zhang Q.S. Xie

PII: S0013-4686(14)02407-4

DOI: http://dx.doi.org/doi:10.1016/j.electacta.2014.11.177

Reference: EA 23849

To appear in: Electrochimica Acta

Received date: 7-9-2014
Revised date: 26-11-2014
Accepted date: 26-11-2014

Please cite this article as: G.H.Yue, Y.C.Zhao, C.G.Wang, X.X.Zhang, X.Q.Zhang, Q.S.Xie, Flower-like Nickel Oxide Nanocomposites Anode Materials for Excellent Performance Lithium-ion Batteries, Electrochimica Acta http://dx.doi.org/10.1016/j.electacta.2014.11.177

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Flower-like Nickel Oxide Nanocomposites Anode Materials for

Excellent Performance Lithium-ion Batteries

G. H. Yue*, Y. C. Zhao, C. G. Wang, X. X. Zhang, X. Q. Zhang, Q. S. Xie

Fujian Key Laboratory of Advanced Materials, Collaborative Innovation Center of

Chemistry for Energy Materials, and Department of Materials Science and Engineering,

College of Materials, Xiamen University, Xiamen 361005, P. R. China

*Corresponding author. Tel. :+ 86 592 2180155; fax: +86 592 2183515

Abstract: A three-dimensional flower-like structure NiO and NiO-based nanocomposites

(NiO@C and NiO/Ni) are synthesized with an ingenious fabrication technique followed

by calcinating process in N₂ atmosphere. The mesocrystal structure and surface

morphology are tested with the X-ray diffraction, scanning electron microscope and

transmission electron microscope methods. As the anode materials for lithium-ion

batteries, the as-prepared three-dimensional flower-like NiO/Ni and NiO@C

nanocomposites maintain reversible discharge capacities of 846 mAh $g^{\text{-}1}$ and 739 mAh

 $g^{\text{-1}}$, respectively, after repeated cycling at a current density of 1 A $g^{\text{-1}}$ over 100 cycles. The

rate performance of the NiO/Ni nanocomposites is better than that of the NiO@C

composites, and the bare NiO should be one of the worst. These results indicate that the

transition metal oxide materials can be promising for anode materials in lithium-ion

batteries after being composited with good conductor materials.

1

Download English Version:

https://daneshyari.com/en/article/6612462

Download Persian Version:

https://daneshyari.com/article/6612462

<u>Daneshyari.com</u>