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Abstract

The Extended Weighted Residuals Method (EWRM) is applied to investigate the effects of viscous dissipation on the thermal devel-
opment of forced convection in a porous-saturated duct of rectangular cross-section with isothermal boundary condition. The Brinkman
flow model is employed for determination of the velocity field. The temperature in the flow field was computed by utilizing the Green’s
function solution based on the EWRM. Following the computation of the temperature field, expressions are presented for the local Nus-
selt number and the bulk temperature as a function of the dimensionless longitudinal coordinate. In addition to the aspect ratio, the other
parameters included in this computation are the Darcy number, viscosity ratio, and the Brinkman number.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Flow through porous media is important in numerous
engineering applications including geothermal energy,
petroleum reservoirs, nuclear reactors, drying, and fuel
cells. Almost all of the natural porous media are associated
with such small porosity that the Darcy flow model is
applicable. However, for man-made porous media with
higher porosity, the Brinkman model predicts hydraulics
through such hyperporous media, as noted by Nield and
Bejan [1].

Because of the use of the so-called hyperporous media in
the cooling of electronic equipment, there has recently been
renewed interest in the problem of forced convection in a
porous medium channel. However, the literature on the
effects of viscous dissipation on thermal development is

limited to work pertaining to parallel plate channel [2–5]
or circular tube [6–9]. In some of these articles the velocity
distribution is slug type while in others the boundary and
shear effects are included via a Brinkman term to form a
Brinkman–Brinkman problem. The term ‘Brinkman–
Brinkman’, proposed by Nield [10], refers to a problem
involving a saturated porous medium in which the momen-
tum transfer is modeled by a Brinkman equation [11], and
the thermal energy equation includes a viscous dissipation
term involving a Brinkman number [12]. The problem
becomes more complicated when one seeks analytical solu-
tions for a thermally developing Brinkman–Brinkman
problem through ducts of arbitrary cross-section. For
two-dimensional ducts, the complexity of the problems
become clearer when one observes that even fully devel-
oped solutions, with or without the effects of viscous dissi-
pation, are limited to the work reported in [13–16]. The
studies of the thermally developing forced convection heat
transfer in elliptical ducts in [17] and for ducts with rectan-
gular cross-sections [18] are without inclusion of the
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viscous dissipation effects. In a recent work, Haji-Sheikh
et al. [19] have considered the effects of viscous dissipation
on heat transfer in the entrance region of ducts of arbitrary
cross-section with a special attention to the isosceles trian-
gular case.

Earlier work on the effects of viscous dissipation in
ducts, clear of solid material, is surveyed by Shah and Lon-
don [20] and for in porous media surveyed by Magyari
et al. [22]. This paper treats the more general case of ther-
mally developing forced convection in rectangular ducts
wherein the viscous dissipation is significant. The EWRM
in an extended form, as discussed in [19], is the selected
computational methodology. This study treats the case of
a duct of rectangular cross-section with walls held at a con-
stant and uniform temperature, i.e. the T boundary condi-
tion in the terminology of Shah and London [20], which is
appropriate when the thermal conductivity of the enclosing
walls is sufficiently high. Here, the Green’s function solu-
tion in [18] is modified mainly to account for the viscous
dissipation effects on the thermal development. For the
case of the Darcy flow model, the hydrodynamically devel-

oped velocity profile is that of slug flow, and the problem is
mathematically similar to a pure conduction [21], but this
paper considers the more complicated flow appropriate to
the Brinkman model.

2. Analysis

2.1. Fluid flow analysis

For a passage with a constant but arbitrarily shaped
cross-section, based on the ligament dimension, the Brink-
man momentum equation, is
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By selecting �y ¼ y=a, �z ¼ z=a, and �u ¼ �lu=ða2op=oxÞ, the
dimensionless form of Eq. (1) becomes,
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Nomenclature

A area (m2)
A matrix
a duct dimension, see Fig. 1
aij elements of matrix A

B matrix
Bm coefficients
b duct dimension, see Fig. 1
bij elements of matrix B

Br Brinkman number, leU2=½keðT 1 � T 2Þ�
cp constant pressure specific heat (J/kg K)
D matrix
Da Darcy number (K/a2)
Dh hydraulic diameter 4ab/(a+b) (m)
dmj elements of matrix D

E matrix with elements eij

eij elements of matrix E

fi; fj basis functions
G Green’s function
h heat transfer coefficient (W/m2 K)
�h average heat transfer coefficient (W/m2 K)
i, j indices
K permeability (m2)
ke effective thermal conductivity (W/m K)
M viscosity ratio, le=l
m, n indices
NuD local Nusselt number, hDh=ke
�NuD average Nusselt number, �hDh=ke

P matrix having elements pmi

Pe Péclet number, qcpUa=ke

Pr Prandtl number, lecp=ke

p pressure (Pa)

pmi elements of matrix P

ReD Reynolds number, qUDh=le

S volumetric heat source, Eq. (4b) (W/m3)
S* dimensionless heat source, Eq. (18b)
T temperature (K)
T1 temperature at x = 0 (K)
T2 wall temperature (K)
U average velocity (m/s)
u velocity (m/s)
�u dimensionless velocity, �lu=ða2op=oxÞ
û u=U
x axial coordinate (m)
�x ðx=aÞ=Pe
y, z coordinates (m)
�y;�z y=a and z=a

Greek symbols

h dimensionless temperature
km eigenvalues
l fluid viscosity (N s/m2)
le effective viscosity (N s/m2)
n dummy variable of integration
q fluid density (kg/m3)
w eigenfunction

Subscripts
b bulk
e effective
o unheated length
w wall
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