FISEVIER

Contents lists available at ScienceDirect

Electrochimica Acta

journal homepage: www.elsevier.com/locate/electacta

Enhanced Photoelectrocatalytic and Photoelectrochemical Properties by High-Reactive TiO₂/SrTiO₃ Hetero-Structured Nanotubes with dominant {001} Facet of Anatase TiO₂

Juan-Ru Huang a,b, Xin Tan c, Tao Yu a,d,*, Lin Zhao b, Wen-Li Hu b

- ^a School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- ^b School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
- ^c School of Science, Tibet University, Lhasa City, 850000, China
- d Tianjin University-National Institute for Materials Science Joint Research Center, Tianjin University, Tianjin, 300072, China

ARTICLE INFO

Article history: Received 8 July 2014 Received in revised form 12 September 2014 Accepted 15 September 2014 Available online 18 September 2014

Keywords: Hetero-Structured TiO₂/SrTiO₃ {001} facet Photoelectrocatalytic Photoeletrochemical

ABSTRACT

High-reactive TiO₂ crystals with controllable facets have been widely investigated in photocatalysis, photoelectrocatalysis, solar energy conversion and other related fields due to their unique structuredependent properties. In this work, high-reactive TiO2/SrTiO3 (TSr) hetero-structured nanotubes with dominant TiO_2 {001} facet are fabricated in a $Sr(OH)_2$ solution by varying the hydrothermal time, utilizing anodizing TiO₂ nanotubes on a Ti substrate as both a "structure-directed" template and an initial reagent to obtain these hetero-structured composites. Based on XRD, FE-SEM with EDS, FE-TEM, XPS and Raman characterization, the high-reactive TSr hetero-structured nanotubes with dominant {001} facet of anatase TiO2 are definitely synthesized and well-dispersed, crystallized SrTiO3 are acquired on the surface of TiO₂ nanotubes after the hydrothermal treatment. Compared with the reference TiO₂ nanotubes, transient photocurrent (I-t) and open circuit voltage (V-t) measurements indicate that the photoelectrochemical properties of these resulting composites are distinctly enhanced by controlling the hydrothermal time to regulate SrTiO₃ coverage on the surface of nanotubes. In particular, photoelectrocatalytic (PEC) degradation of "target molecules" MB are further implemented to evaluate their PEC activities, and these data reveal the significant improvement of their corresponding activities over the reference TNT2, and this TiO₂/SrTiO₃ composite with the hydrothermal time of 30 min (TSr3) possesses the highest PEC rate of 99.93% for MB after the degradation of 20 min. These above results are attributed to the high-reactive TiO₂ {001} facet of TiO₂/SrTiO₃ interior and the hetero-structured interfaces by SrTiO₃ generated on TiO₂ nanotubes in a hydrothermal process. In addition, the mechanism of PEC degradation is also simply discussed in comparison to the relevant photocatalytic (PC) and electrocatalytic (EC) reaction. This work demonstrates that a synergetic mechanism between high-reactive (001) facet of anatase TiO₂ and hetero-structured characteristics contributes to enhancing their PEC activities and according photoelectrochemical properties, which can be extended to other binary compounds with high-reactive facets.

© 2014 Published by Elsevier Ltd.

1. Introduction

Since the endeavor of Fujishima and Honda on the TiO_2 photocatalyst in 1972 [1], nano-structured TiO_2 electrode, as the one of the promising photocatalytic (PC) materials, has extensively investigated due to its exceptional advantages, such as low cost, chemical stability, environmental friendship and outstanding oxidization ability. During the last decades, the electrode design,

* Corresponding author. Tel.: +86 22 2350 2142. E-mail addresses: yutao@tju.edu.cn, yu@gmail.com (T. Yu). based on nano-engineering technology, was rapidly developed to improvement the reactive efficiency of photoelectrochemical cell, and these relevant works made great efforts in increasing the reactive sites, intensifying the charge transfer/transport and reducing the electron/hole combination. TiO_2 physicochemical activities are mostly affected by intrinsic electronic structures and their size, shape, organization, and surface properties, such as reactive crystal facets. During the crystal growth processes of equilibrium conditions, the high-active facets of TiO_2 crystals are prone to diminish quickly and spontaneously evolve into specific shape with exposed low-active $\{101\}$ facets $(0.44 \text{ J/m}^2 \text{ for } \{101\} < 0.53 \text{ J/m}^2 \text{ for } \{100\} = \{010\} < 0.90 \text{ J/m}^2 \text{ for } \{001\})$ to minimize the

total surface free energy. Thereupon, the controllable fabrication of anatase TiO₂ crystals with exposed high-active facets is becoming an urgent challenging, followed by exploiting their improved surface properties for photoelectrocatalytic (PEC) and related applications. In 2008, Yang et al. elaborately designed anatase TiO₂ single crystal with 47% {001} facet [2], and the following endeavor highlighted anatase TiO₂ with exposed {001} facet-based fabrication and applied research in photocatalysis, solar cells and lithium ion batteries [3–6]. These results implied that the high activities of {001} facet are primarily described to dissociatively adsorb water to form hydrogen peroxide and peroxide radicals. Recently, TiO₂ nanotube (TNT) arrays with dominant high-reactive {001} facet of anatase TiO₂, grown on a Ti substrate by anodization, revealed the prominent photoeletrochemical properties because the characteristic architectures afforded unidirectional electric channels for the transport of photo-generated electrons. The improved transport properties prolonged the electron diffusion length and retarded the charges combination [5,6].

The positive coupling effect of the hetero-structured composites, combining TiO2 and other PC semiconductors is always considered as one of the effective approaches to promote TiO₂ reactive properties. The structures directionally migrate the photo-generated charge carriers transfer at the hetero-structured interface to retard their recombination, and, thus, heighten the photoelectrochemical properties in comparison to reference TiO₂ [7]. Among them, SrTiO₃, a well-known perovskite semiconductor with the band gap of 3.2 eV is widely investigated in photocatalysis, dve-sensitized solar cells and other applications. In contrast to TiO₂, SrTiO₃ has the similar electronic structure and band gap, and SrTiO₃ has good PC degradation ability for organic pollutants. More importantly, the conduct band (CB) of SrTiO₃ is 200 mV more positive than that of TiO₂, inducing the shift in the Fermi level to a more negative potential. The hetero-structured configuration provides a favorable energy of photocatalysis and sequentially contributes to the improvement of photo-generated charges separation [7–16]. Several groups have already reported that the hetero-structured TiO₂/SrTiO₃ (TSr) nanotubes under UV irradiation exhibited the strengthened PC and photoelectrochemical performance since the resulting hetero-structured interface can stimulate the orienting transfer of charge carriers and further reinforce their separation [15,17,18]. Furthermore, threedimensional nanostructures, which provide an efficient current path, is becoming a fascinating path to advance their PEC and photoelectrochemical performance [8,13,15].

Advanced photoelectrochemical oxidation has been proposed as an alternative method to eliminate environmental organic

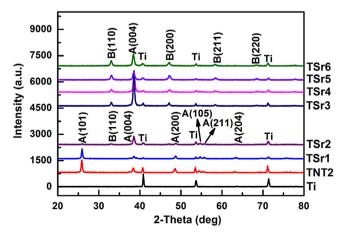


Fig. 1. XRD patterns of the hetero-structured composites and reference TNT2, Ti substrate; A, B signifies anatase TiO₂ and perovsikte SrTiO₃, respectively.

pollutants and toxic compounds, and the PEC degradation, combining PC and electrocatalytic (EC) processes, is referred to as electrochemically assisted PC degradation via an applied external potential, resulting in the photo-generated electrons continuously extracted from the anode by the external circuit and, thereby, intensifying the photo-generated electron/hole separation [19]. One crucial factor of PEC process is to assemble an electrode material which possesses remarkable optical and electrical catalytic properties simultaneously. TiO2, which can undertake the double features in PEC degradation, had also been definitely demonstrated in these PEC applications [20-24]. In particular, high-reactive anatase TiO₂ with dominant {001} facet [3,4,25–30] and hetero-structured TSr composites [7,8,13–15] can significantly promote their PC activity and photoelectrochemical properties. Besides, a TNTs/Ti electrode, whose films are coated on a Ti substrate, indicates a better PEC activity due to the less impedance between TNT arrays and a Ti substrate [31]. As a consequence, the affirmative cooperation, derived from the highactive {001} facet of anatase TiO₂ and the coupling composites of TiO₂ and SrTiO₃, is expected to realize the enhanced PEC and photoelectrochemical properties by using the high-reactive TSr composites.

Herein, according to the optimizing synthesis condition of our previous work [32], the hetero-structured TSr nanotubes with high-reactive $\{001\}$ facet of anatase TiO_2 were fabricated via a conventional anodization and a hydrothermal treatment with the time from 0 min to 60 min, followed by annealing at $450\,^{\circ}\mathrm{C}$. Based on XRD, FE-TEM, FE-SEM with EDS, XPS and Raman characterizations, this work highlighted the fabricating mechanism of the high-reactive TSr nanotubes and the effect of hydrothermal time on their according PEC and photoelectrochemical properties by transient photocurrent (I-t), open circuit voltage (V-t) measurement, and PEC degradation of MB. These above results indicate that their outstanding PEC properties are attributed to the synergetic effect of high-reactive $\{001\}$ of anatase TiO_2 and the positive coupling of TiO_2 and SrTiO_3 in comparison to reference TiO_2 nanotubes.

2. Experimental Section

2.1. Fabrication of hetero-structured TiO₂/SrTiO₃ nanotubes with high-reactive {001} facet of anatase TiO₂

Well-aligned TiO_2 nanotube arrays on a Ti substrate was fabricated via traditional anodizing method according to our published report [33]. Prior to anodization, a Ti substrate was ultrasonically treated in anhydrous ethanol, isopropanol, and distilled water for $10\,\mathrm{min}$, respectively, and the subsequent anodization at a direct current of $60\,\mathrm{V}$ was executed in a two-electrode electrochemical system with a Ti substrate (0.5 mm, $1.0\,\mathrm{cm} \times 4.0\,\mathrm{cm}$, 99.7%) as the anode and a Pt silk (99.7%) as the cathode. The whole process was divided into the pre-treatment and re-anodizing parts, a Ti substrate was firstly anodized $30\,\mathrm{min}$ and then removed the as-formed thin film from the substrate in an ultrasonic cleaner, and the pre-treated substrate with similar "hexagon" patterns, which is used as the template, was re-anodized in this electrochemical system for $2\,\mathrm{h}$, and the resulting TNT arrays were marked as TNT2.

The resulting TNT2 with a Ti substrate is used as a "structure-directed" template and an initial reactant to fabricate the hetero-structured TSr nanotubes in a typical hydrothermal solution. The above anodizing Ti substrate was vertically fixed in a 50 mL of Teflon-lined stainless steel autoclave with 40 mL of 0.025 M Sr(OH)₂ hydrothermal solution, and the autoclave was kept at 200 °C for 0 min, 10 min, 20 min, 30 min, 40 min, 50 min, and 60 min, respectively. After this process, the resulting

Download English Version:

https://daneshyari.com/en/article/6612757

Download Persian Version:

https://daneshyari.com/article/6612757

<u>Daneshyari.com</u>