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Abstract

The present short communication shows an exact solution of the Navier–Stokes equations in the case of a channel filled with gas and
with temperature contrast between the boundaries. This exact solution is then compared with the result of a numerical simulation made
using a numerical code widely used in fire safety engineering. It shows the ability of the code to reproduce this highly stratified flow.
Nusselt numbers are then estimated.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

There are very few exact solutions of the Navier–Stokes
equations ([1,8]). The real interest of such exact solutions
may be questioned, because they are generally subject to
instabilities, sometimes at a relatively low Reynolds num-
ber. Moreover, they rarely represent a situation with a
practical interest.

However, these exact solutions are useful for making a
comparison with a numerical calculation, thus providing
some insight on the quality of the simulation tool used.

In the present short communication, we first show that
there is an exact solution for gas flows in horizontal chan-
nels (of height h) with vertical density gradients which may
be very high (leading to a non-Boussinesq situation). The
vertical density gradient is created by imposed tempera-
tures on the top and bottom boundaries (see Fig. 1). The
flow is considered far downstream of the inlet (say, at a dis-
tance L from the entrance, with L� h, see Fig. 1), so that
the precise form of the entrance conditions is unimportant
and the gradients in velocity and temperature are purely

vertical. This situation is rather different from the one stud-
ied in [4], where the flow develops in a gap between two
parallel vertical boundaries, gravity being parallel to the
main direction of the flow and the small mass flow through
each cross section of the gap being small.

In view of the very high density gradients considered, we
focus on flows of an ideal gas. The exact solution is then
compared with the result of a direct numerical simulation
made with a code of widespread use for the assessment of
hot air motion with the application of fire safety.

2. Steady laminar parallel flow

2.1. Channel flow equations for an ideal gas at low Mach

number

The flow of a fluid of variable density in a 2D channel of
height H is considered. The flow is assumed to be parallel
and the streamwise direction is denoted by x. The vertical
direction is denoted by z, so that

u ¼ UðzÞex; q ¼ qðzÞ: ð1Þ

The fluid is assumed to be an ideal gas in the low Mach-
number limit.

For a fluid of variable density, the Navier–Stokes equa-
tions are written as
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where sij represents the viscous stress and for a Newtonian
fluid is given by
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(l is the dynamic viscosity and l0 � l). The energy conser-
vation may be expressed through the enthalpy equation,
which, for an ideal gas, is written as
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where T is the temperature, Cp is the specific heat and j is
the diffusivity of heat.

Following an infinitesimal stream-tube, dP � �qdðu2=
2Þ � qðu2=2Þ, and therefore, since in an ideal gas the sound
celerity is given by c ¼
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where M is the Mach number and � reads ‘of the same
order of magitude’. If M2 � 1, then dP=P � 1. The differ-
ential form of the state equation of an ideal gas in the pres-
ent low Mach number situation is therefore

dq
q
þ dT

T
� 0; ð6Þ

whence

qT ¼ q0T 0 ð7Þ
with q0 the density at a reference temperature T0.

Therefore, the enthalpy equation reduces to
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where Cp has been taken as a constant.

2.2. Exact solution of the equations

For a steady laminar parallel flow, the equations (2)
reduce to
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with the boundary conditions as described in the introduc-
tion and sketched in Fig. 1.

Defining a ¼ � oP
ox, it follows
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Hence, the momentum equation on the x-coordinate
becomes

d
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which can be integrated to

l
dU
dz
¼ �azþ s0 ð11Þ

where s0 is the shear stress at z = 0. Note that if a 6¼ 0,
e ¼ s=a is a height at which dU

dz ¼ 0 (0 < e < H exists since
Uð0Þ ¼ UðHÞ ¼ 0). A good approximation for dry air is a
constant Prandtl number Pr ¼ l

qj and specific heat Cp (see
[6], table 5-1-8). Therefore, the heat equation can be inte-
grated to

l
dT
dz
¼ Prq0

Cp
ð12Þ

where q0 is the vertical heat flux at z = 0.
The variation of l with temperature in an ideal gas is

given by the Sutherland formula:

l ¼ lr
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with lr the dynamic viscosity at a given reference tempera-
ture Tr and C a constant. For dry air, C ¼ 123:6 K, and at
T r ¼ 273 K, lr ¼ 17:1� 10�6 Pa.s. Note that the reference
temperature may be chosen arbitrary provided the refer-
ence dynamic viscosity is calculated according to this refer-
ence temperature. It follows that
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Writing Z ¼ z=H , U 0 ¼ sH=l0, ~u ¼ U=U 0, a ¼ aH=s,
h ¼ T=T 0 (where T0 is the bottom boundary temperature),
b ¼ C=T 0, and c ¼ Prq0H

Cpl0T 0ð1þbÞ, it follows

Fig. 1. Stratified flow in a horizontal channel, sketch of the flow and
boundary conditions.

P. Carlotti / International Journal of Heat and Mass Transfer 50 (2007) 3690–3694 3691



Download	English	Version:

https://daneshyari.com/en/article/661290

Download	Persian	Version:

https://daneshyari.com/article/661290

Daneshyari.com

https://daneshyari.com/en/article/661290
https://daneshyari.com/article/661290
https://daneshyari.com/

