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Abstract

A fundamental understanding of electrolytic flow in microchannels is essential for the design of microfluidic devices. Hence, an ana-
lytic investigation is presented on the effects of electrostatic potential in microchannels. Solving the Navier—Stokes equations, an expres-
sion for the CyRe product is presented. Solving the energy equation the Nusselt number for constant wall heat flux and constant wall
temperature boundary conditions are presented with analytic expressions over a wide range of operating conditions.
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1. Introduction

Micro-electro-mechanical-systems (MEMS) and other
microfluidic technologies have revolutionized many aspects
of applied sciences and engineering, such as heat exchang-
ers [1], pumps [2], combustors, gas absorbers, solvent
extractors, fuel processors [3], and on-chip biomedical
and biochemical analysis instruments [4]. All of these
devices involve fluid flow and heat transfer in microchan-
nels. Indeed, much study has been focused on microchan-
nels [5] for efficient cooling of chips due to their very
high heat transfer coefficients [6].

When dealing with micro-fluidics or flows in microchan-
nels, the interfacial effects (phenomenon happening at the
surface of the microchannel), which are negligible in bulk
fluid flows, becomes more pronounced [7-13]. In particu-
lar, electrolytic flow in microchannels can be significantly
different than non-electrolytic flows. The phenomenon
manifests itself by generating a viscous effect, which affects
both the flow and heat transfer.

The present work deals with the modification of Navier—
Stokes equation to take into account the effect of electroki-
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netics and the development of analytic expressions for both
the friction factor and Nusselt number. Previous investiga-
tions have ignored these effects at lower ionic concentra-
tions. The present work is applicable over the complete
range of ionic concentration.

2. Governing equations

While the application is for flow in microchannels that
have rectangular or trapezoidal cross- section, the present
analysis is applied to an infinite parallel plate channel. To
apply the governing Navier—Stokes and energy equations
to this situation, the following simplifying assumptions
are made:

1. The flow is laminar, incompressible, steady, fully devel-
oped hydrodynamically and thermally, and the channel
is considered as infinite parallel plates.

2. Gravity forces are ignored.

3. The fluid is Newtonian and its properties are indepen-
dent of the local electric field strength.

4. The ions are point charges, with no concentration gradi-

ents in the flow.

. Zeta potential is assumed to be uniform over the

surface.
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6. Viscous dissipation is neglected as its magnitude is very
small in microchannel flows and the pressure force is the
dominating factor.

7. The fluid is a continuum, and the Knudsen number is
<0.1.

Application of these assumptions to the three governing
equations results in:
Continuity equation:

du
— 1
L (1)
Navier—Stokes equation:

d*u dp

— - E.=0 2
Mg T de TP (2)
Energy equation:

dr T

where x is the direction along the flow and y is the direction
perpendicular to fluid flow and is measured from the chan-
nel centerline. The forces acting on an element of liquid in-
clude the pressure force, the viscous force and the electrical
body force generated by the flow-induced electro-kinetic
field (i.e., the streaming potential) represented by the term
p.E., where p. is the net charge density per unit volume
and E, is the non-dimensional streaming electric field.
We must develop an expression for p.E, before the above
equations can be solved.

2.1. Development of surface charges and electric double layer

Any surface is likely to carry some charges because of
“broken bonds” and “surface charge traps”. Likewise,
most surfaces acquire an electrostatic charge when in con-
tact with an aqueous solution. If the liquid contains a very
small amount of ions (due to impurities), the presence of a
surface charge causes both counter-ions and co-ions in the
liquid to be preferentially redistributed, leading to the for-
mation of the electric double layer (EDL) near the wall.

The EDL can be divided into an inner compact layer and
an outer diffuse layer. Ions of opposite charges cluster close
to the wall, forming the Stern layer or the Shear Plane, and
the ions within the Stern layer are attracted to the wall with
very strong electrostatic forces. The wall electrostatic
attraction causes the counter-ion concentration to be
higher near the solid surface as compared to the bulk fluid
away from the wall. Contrary to this the co-ion concentra-
tion near the surface is lower than that in the bulk liquid,
due to the electrostatic repulsion. In contrast, ions in the
diffuse layer are less affected by the charged surface (than
those in the compact or inner layer) and, hence, are mobile.
The thickness of the diffuse layer is dependent on the bulk
ionic concentration and electrical properties of the liquid.
Electrostatic potential is generally measured at the shear
plane, where the electric potential is measurable and is

called the zeta potential, denoted by {, which typically
decays exponentially at distances farther from the wall.

The fluid flow in the microchannel results in the down-
stream flow of the counter-ions. This causes an electric cur-
rent, called the streaming current, in the direction of fluid
flow. The streaming potential associated with the streaming
current is called electro-kinetic potential. This potential
drives the counter-ions in the direction opposite to the
streaming current. When the ions move in the liquid, they
exert a force on the liquid molecules, thus generating a vis-
cous effect, usually referred to as the electro-viscous effect.
Generally, for macrochannel flow the EDL effects can be
safely neglected, as the thickness of the EDL is very small
compared with the hydraulic diameter of the channels.
However, for microchannel flow the thickness of the
EDL is often comparable with the characteristic size of
the channels and cannot be neglected.

2.2. Poisson—Boltzmann equation

The electrostatic potential iy is related to the local net
charge density per unit volume p. at certain points in the
solution by the Poisson equation as:

&y_ 2 @
dy? g

where ¢ is the permittivity or the dielectric constant of the
solution. Assuming that the equilibrium Boltzmann distri-
bution equation is applicable, the number concentration of
the type-i ions, denoted by n,, in a symmetric electrolyte
solution is of the form:

0y = g exp (*”) (5)

kgT

where n;, and z; are bulk ionic concentration and the va-
lence of type-i ions, respectively, e is the charge of an elec-
tron, kg is the Boltzmann constant and 7 is the absolute
temperature.

For a symmetric electrolyte of valence z, the net volume
charge density p, is related to the total concentration differ-
ence between the cations and anions as:

pe=ze(n. —n_) (6)

Substituting the values of the number concentration of
each ion from Eq. (5) into Eq. (6), we obtain:

) zey
. = —2zen, sinh | — 7
p (kB T) (7)

where n, is the bulk ion concentration of each ion.
Substituting the value of charge density (Eq. (7)) in the
Poisson equation (Eq. (4)) results in:

d*y  2zen, . zey
d—y2 = : sinh (kB_T) (8)

The above non-linear second-order one-dimensional equa-
tion is known as the Poisson-Boltzmann equation.
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