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a b s t r a c t

Residential geothermal heating systems have been developed over the past few decades as an alternative
to fossil-fuel based heating. Through mathematical modeling the relationship between the operating
parameters of the heat pump and the piping length of the geothermal system, which is directly correlated
to the cost of the system is investigated. The effect of Taylor dispersion of heat in the fluid which is not yet
addressed in the literature with respect to geothermal systems is included. A model of a simple config-
uration of a single pipe surrounded concentrically by grout and then by soil is considered, where the soil
region has a constant ambient temperature. The conduction between the two regions is modeled with a
classical thermal resistance. Taylor dispersion effects are significant at higher Peclet numbers associated
with this system, and Taylor dispersion in the fluid and thermostat frequency dictate the minimum tub-
ing length needed for successful operation in an insulated subsystem. We consider both steady state and
transient (cyclic operation) analyses and find that the axial dispersion increases linearly in the cycle rate
for large flow rates. We find that the estimated tubing length for complete energy transport is increased
when Taylor dispersion is included, but that this effect can be mitigated with an appropriate choice of the
borehole radius.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Although the promise of environmentally friendly, low-cost en-
ergy harnessing for heating and cooling of residential properties
has been known for nearly 30 years, the adoption of the technology
in the United States has been slow. These geothermal systems, also
known as ground-coupled heat pumps, consist of a field of vertical
boreholes in the ground with pipes carrying a heat transfer fluid
into the earth to gain access to the stable year-round temperatures
underground. The fluid is pumped back to the residential unit to be
used for heating or cooling depending on the season. A significant
portion of the cost for ground-coupled heat pump systems is in the
installation of the large networks of piping to harness the geother-
mal energy. These installation costs are currently cost-prohibitive,
with a typical return-time on investment on the order of 8–10
years. One means to improve the economic competitiveness of
these systems is to reduce the installation footprint. Our focus in
this research program is to develop mathematical models to quan-
tify how the length of the piping is related to the operational
parameters of the system. The model developed in this work in-
cludes both the effect of cycling (turning the fluid flow on or off
in response to the heating or cooling load of the residence) and

the effect of axial heat transport, by means of advection and Taylor
dispersion, in the pipes.

The main design criteria for these heating systems is the effec-
tive power that can be obtained from the fluid heated as it flows
through the tubing.2 The power rating of these systems can be esti-
mated by determining the change in rate of thermal energy of the
fluid entering the system from the residence and leaving the
system

Power ¼ qwcwU�ApDT;

where qw is the density of the fluid, cw is the specific heat of the
fluid, U� is the characteristic fluid velocity, Ap is the pipe’s cross-sec-
tional area, and DT is the temperature change. For a given fluid, such
as water or ethylene glycol, flow rate and power rating requirement,
the required length of pipe needed for the system to function prop-
erly is determined from the unknown temperature variation in the
axial direction. However, the temperature profile in the fluid is nec-
essarily coupled to the thermal behavior in the soil from which the
energy is transferred. In order to fully understand how these sys-
tems work, a requirement for design optimization, the temperature
profile in both the soil and the fluid need to be solved simulta-
neously. This is a difficult modeling task, so it is no surprise that
some simplifications in the modeling have been attempted in order
to understand different aspects of the system.
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Analytical approaches to these systems have focused on the
thermal behavior of the soil in the cross-section, with the assump-
tion that the temperature profile in the fluid is known. The sim-
plest model used is an adaption of the Kelvin line-source model
[1]. This model assumes that a radial heat flux is known from the
tubing which is proportional to the temperature difference be-
tween the fluid temperature and the soil temperature. To model
axial heat transport, the cylinder source model has been applied
[2] (a brief and clear review of this models is presented in [3]). This
model couples the heat flow between cross-sectional planes of the
line-source model with a prescribed thermal resistance [4–6]. Fur-
ther, a radial thermal resistance is used to decouple the local ther-
mal behavior from the far-field behavior. All of these attempts have
not investigated how the advective heat transport in the fluid af-
fects the axial heat flow in the soil in a direct, physically funda-
mental way. A fundamental approach does not rely on a
phenomenologically-based choice for an axial thermal resistance,
which then must be modified with a new series of experiments
for each new system.

There has been recent interest [3] in developing transient
models that can provide better analyses of the short time behavior
of the ground heat exchanger (GHE). Dobson [7] showed that
cycling the flow (with an on-time on the order of minutes) can
improve the efficiency of the system. The development of better
transient models will enable better simulation of geothermal sys-
tems and improve the optimization of geothermal designs. We
are interested in finding a mathematical description, based on
the fundamental equations of heat transfer in continuous media,
of the near and far-field behavior of the system in order to optimize
their design. In this work, we consider the local behavior near the
tubing, and include the effect of Taylor dispersion of heat in the
tubing and the grout for the simple case of a single pipe within a
borehole. Although we assume knowledge of the far-field temper-
ature profile in this work, a subsequent paper in preparation

addresses how this local temperature profile is coupled to the
far-field distribution over long times.

In order to better understand the dominant mechanisms of the
local system, we note that there are two time-scales of interest.
The first corresponds to the thermal transport time due to conduc-
tion for heat to diffuse through soil, which is on the order of hours.
The second time scale is the typical cycle time needed to maintain
a residence at a prescribed temperature, which is on the order of
minutes. These time scales can be represented mathematically by

conduction time ¼ a2

ag
; cycle time ¼ a

U�
;

where a is the radius of the pipe and ag is the thermal diffusivity of
the grout. The ratio of these time-scales

cycle time
conduction time

¼ aag

a2U�
¼ a

Pe
� 1;

where a ¼ ag=aw is the ratio of the thermal diffusivities of the grout
to the water and Pe ¼ aU�=aw is the Peclet number of the fluid flow.
Since a ¼ Oð1Þ, this suggests that we are interested in the case for
large Peclet numbers.

There is a classical result from solutal diffusion in laminar fluid
flows found by Taylor [8,9], in which he found an effective diffu-
sion coefficient for the concentration C in a solvent

@C
@t
¼ 1þ Pe2

192

" #
@2C
@y2 ;

where time t is on the diffusive time-scale and y is a frame of refer-
ence moving with the average fluid velocity. The first term in the
effective diffusion coefficient represents Fickian diffusion, whose
relative importance decreases with increasing Peclet number. The
second term, however, grows quadratically with increasing Peclet
number, and this term is called Taylor dispersion. Further, Aris

Nomenclature

D dimensionless axial diffusion coefficient
H dimensionless heat transfer coefficient
L dimensional characteristic axial length
Nu scaled Nusselt number, L2h=ðakgÞ
P period of thermostat oscillation (on and off cycles)
Pe Peclet number, U�a=aw

R radial extent of grout region
T temperature
U characteristic axial fluid velocity
a tubing radius
c specific heat (J/kg K)
h heat transfer coefficient
k thermal conductivity
‘ dimensionless axial characteristic length scale
r radial coordinate
t time
u axial fluid velocity
x axial coordinate
v thermal front velocity
y moving frame of reference, x� v Pet

Greek symbols
a thermal diffusivity
d relative temporal period of oscillation compared to

characteristic time-scale
� aspect ratio, a=L
j wavenumber of axial temperature profile
g dimensionless thermostat cycle rate

q density
r spatial exponential growth rate (steady-state solutions)
s slow-time, �t
h dominant grout temperature
�h correction to radial average temperature
n similarity variable, y=2

ffiffiffiffiffiffi
Dt
p

Subscripts
F Fourier-law diffusion
Tw Taylor dispersion effect from water
Tg Taylor dispersion effect from grout layer
0;1; . . . correction of quantity to Oð�0;1;...Þ
a ambient
eff effective quantity (time-averaged)
g grout quantity
i inlet
r @=@r
s steady
t @=@t
u unsteady
w water quantity
x @=@x
s @=@s

Superscripts
� dimensional quantity
(1) water quantity
(2) grout quantity

A. Ortan et al. / International Journal of Heat and Mass Transfer 52 (2009) 5072–5080 5073



Download English Version:

https://daneshyari.com/en/article/661428

Download Persian Version:

https://daneshyari.com/article/661428

Daneshyari.com

https://daneshyari.com/en/article/661428
https://daneshyari.com/article/661428
https://daneshyari.com

