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a b s t r a c t

The aim of this paper is to present the unsteady boundary layer flow and heat transfer of a fluid towards a
porous stretching sheet. Fluid viscosity and thermal diffusivity are assumed to vary as linear functions of
temperature. Using similarity solutions partial differential equations corresponding to the momentum
and energy equations are converted into highly non-linear ordinary differential equations. Numerical
solutions of these equations are obtained with the help of shooting method. It is noted that due to
increase in unsteadiness parameter, fluid velocity decreases up to the crossing over point and after this
point opposite behaviour is noted. The temperature decreases significantly in this case. Fluid velocity
decreases with increasing temperature-dependent fluid viscosity parameter (i.e. with decreasing viscos-
ity) up to the crossing over point but increases after that point and the temperature decreases in this case.
Due to increase in thermal diffusivity parameter, temperature is found to increase.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The study of hydrodynamic flow and heat transfer over a
stretching sheet has gained considerable attention due to its appli-
cations in industries and important bearings on several technolog-
ical processes. Crane [1] investigated the flow caused by the
stretching of a sheet. Many researchers such as Gupta and Gupta
[2], Chen and Char [3], Dutta et al. [4] extended the work of Crane
[1] by including the effect of heat and mass transfer analysis under
different physical situations.

All the above mentioned studies confined their discussions by
assuming uniformity of fluid viscosity. However, it is known that
the physical properties of fluid may change significantly with tem-
perature. The increase of temperature leads to a local increase in
the transport phenomena by reducing the viscosity across the
momentum boundary layer and so rate of heat transfer at the wall
is also affected. Therefore, to predict the flow behaviour accurately,
it is necessary to take into account the viscosity variation for
incompressible fluids.

Gary et al. [5] and Mehta and Sood [6] showed that, when this
effect is included the flow characteristics may change substantially
compared to constant viscosity assumption. Recently Mukhopad-
hyay et al. [7] investigated the MHD boundary layer flow with var-
iable fluid viscosity over a heated stretching sheet.

All of the above mentioned studies were restricted to the steady
state conditions. The transient or unsteady aspects become inter-

esting in certain practical problems where the motion of the
stretched surface may start impulsively from rest. Elbashbeshy
and Bazid [8] and Sharidan et al. [9] presented similarity solutions
for unsteady flow and heat transfer over a stretching surface.

The present work deals with unsteady fluid flow and heat trans-
fer over a stretching sheet in presence of wall suction. Fluid viscos-
ity and thermal diffusivity are assumed to vary as linear functions
of temperature. Similarity variable and similarity solutions are ob-
tained and using them, a third order and a second order ordinary
differential equations corresponding to momentum and energy
equations are derived. These equations are solved numerically
using shooting method. The effects of different parameters (viz.
unsteadiness, temperature-dependent fluid viscosity, variable
thermal diffusivity and suction) on velocity and temperature fields
are investigated and analysed with the help of their graphical
representations.

2. Equations of motion

We consider unsteady two-dimensional forced convection flow
of a viscous incompressible fluid past a heated stretching sheet im-
mersed in a porous medium in the region y > 0 and moving with
non-uniform velocity U(x, t) = cx

1�at where c, a are positive constants
with dimensions (time)�1, c is the initial stretching rate and c

1�at is
the effective stretching rate which is increasing with time. In case
of polymer extrusion, the material properties of the extruded sheet
may vary with time. Here, the stretching surface is subjected to
such amount of tension which does not alter the structure of the
porous material.
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The temperature of the sheet is different from that of the ambi-
ent medium. The fluid viscosity is assumed to vary with tempera-
ture while the other fluid properties are assumed constants.

The continuity, momentum and energy equations governing
such type of flow are written as
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where u and v are the components of velocity, respectively, in x and
y directions, T is the temperature, j is the coefficient of thermal dif-
fusivity (dependent on temperature), cp is the specific heat, q is the
fluid density (assumed constant), l is the coefficient of fluid viscos-
ity (dependent on temperature), k is the permeability of the porous
medium.

2.1. Boundary conditions

The appropriate boundary conditions for the problem are given
by

u ¼ Uðx; tÞ; v ¼ vwðtÞ; T ¼ Twðx; tÞ at y ¼ 0; ð4Þ
u! 0; T ! T1 as y!1; ð5Þ

where vw(t) = �v0

ffiffiffiffiffiffiffiffi
1

1�at

q
is the velocity of suction (v0 > 0) of the fluid,

Twðx; tÞ ¼ T1 þ 1
2 T0Rexð1� atÞ

�1
2 is the wall temperature [10] where

Rex ¼ Ux
m� is the local Reynolds number based on the stretching veloc-

ity U, T0 is a reference temperature such that 0 6 T0 6 Tw and m* is
the kinematic viscosity of the ambient fluid. The expressions for
U(x, t), Tw(x, t), vw(t) are valid only for time t < a�1 unless a = 0.

It is to be noted that though the velocity and temperature are
time dependent (initially), no initial condition is needed in the
boundary as the transformed equations [see (9) and (10)] and
the boundary conditions [see (11) and (12)] are independent of
‘‘t” (see Elbashbeshy and Bazid [8], Andersson et al. [10]). On the
other hand if the initial and boundary conditions are taken as [in-
stead of (4) and (5)]

t < 0 : u ¼ 0; T ¼ T1 for any x; y; ð4aÞ
t P 0 : u ¼ Uðx; tÞ; v ¼ vwðtÞ; T ¼ Twðx; tÞ at y ¼ 0; ð4bÞ

u! 0; T ! T1 as y!1 ð5Þ

then also these conditions (4) and (5) reduce to Eqs. (11) and (12).

2.2. Method of solution

We now introduce the following relations for u, v and h as

u ¼ @w
@y

; v ¼ � @w
@x

and h ¼ T � T1
Tw � T1

; ð6Þ

where w is the stream function.
The temperature-dependent fluid viscosity is given by [7]

l ¼ l�½aþ bðTw � TÞ�; ð7Þ

where l* is the constant value of the coefficient of viscosity far
away from the sheet and a, b are constants and b(> 0).

We have used viscosity–temperature relation l = a � bT (b > 0)
which is in perfect harmony with the relation l = e�aT [11] when
second and higher order terms neglected in the expansions.

The variation of thermal diffusivity with the dimensionless
temperature is written as

j ¼ j0ð1þ bhÞ: ð8Þ

b is a parameter which depends on the nature of the fluid, j0 is the
value of thermal diffusivity at the temperature Tw.

We introduce

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c
m�ð1� atÞ

r
y; w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�c

ð1� atÞ

s
xf ðgÞ;

T ¼ T1 þ T0
cx2

2m�

� �
ð1� atÞ

�3
2 hðgÞ:

With the help of the above relations, the governing equations fi-
nally reduce to

M
g
2
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� �
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Mhþ 2f 0h� f h0 ¼ 1
Pr
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where M ¼ a
c is the unsteadiness parameter, A = b(Tw � T1) is the

temperature-dependent viscosity parameter, m� ¼ l�
q .

The boundary conditions (4) and (5) then become

f 0 ¼ 1; f ¼ S; h ¼ 1 at g ¼ 0; ð11Þ
and f 0 ! 0; h! 0 as g!1; ð12Þ

where Pr ¼ m�qcp

j ¼ l�cp

j is the Prandtl number, S ¼ v0ffiffiffiffiffi
m�c
p , S > 0 corre-

sponds to suction.

Nomenclature

A fluid viscosity variation parameter
f non-dimensional stream function
f0 first order derivative with respect to g
f0 0 second order derivative with respect to g
f0 0 0 third order derivative with respect to g
M unsteadiness parameter
Pr Prandtl number
p,q variables
S suction parameter
T temperature of the fluid
Tw temperature of the wall of the surface
T1 free-stream temperature
u, v components of velocity in x and y directions
z variable

Greek symbols
b thermal diffusivity parameter
g similarity variable
k the non-uniform value of coefficient of thermal diffusiv-

ity
l dynamic viscosity
l* reference viscosity
m* reference kinematic viscosity
w stream function
q density of the fluid
h non-dimensional temperature
h0 first order derivative with respect to g
h0 0 second order derivative with respect to g
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