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a  b  s  t  r  a  c  t

A  universal  relationship  between  the partial  molar  entropy  of electrons  in  a  conductor  and  the  absolute
thermoelectric  power  of  the  conductor  was  previously  established  using  macroscopic  thermodynamics.
This  relationship  may  depend  on  temperature  but not  on  the type  of  material.  Building  on  this,  a  recent
comment  published  in  this  journal,  as well  as some  earlier  work,  has  argued  that  the  partial  molar  entropy
of electrons  in  a conductor  is  essentially  equivalent  to  the  absolute  thermoelectric  power  of  the  metal.
The  argument  was  based  on  the  thermodynamic  and  transport  properties  of a free  electron  Fermi  gas. To
further validate  the relationship  the present  paper  extends  this  approach  to a jellium  model  of electronic
structure.  If  the  proposed  equivalence  between  partial  molar  entropy  and  absolute  thermoelectric  power
is valid  it  opens  the  way  for  an  experimental  thermodynamic  method  to measure  quantities  that  have
previously  been  considered  un-measurable,  such  as  partial  molar  entropies  of ions  in solution  and  electric
fields in homogeneous  conductors  placed  in  a  temperature  gradient.  It also  relates  to  questions  about
the  completeness  of  current  thermodynamic  theory  and the  possibility  of  a  new  principle  or  law  of
thermodynamics.

© 2013 The Author. Published by Elsevier Ltd. All rights reserved.

1. Introduction

An earlier paper in this journal discussed thermoelectrochemi-
cal effects and also examined the relationship between the partial
molar entropy of electrons in metals and the absolute Seebeck coef-
ficient of the metal, also known as the absolute thermoelectric
power [1]. By applying microscopic theory to the problem it was
argued that the partial molar electronic entropy and the absolute
thermoelectric power are essentially equivalent for all isotropic
materials.

Stated briefly, the argument for the validity this proposal uses
Eq. (1)

G(T) = S + F� (1)

where S is the partial molar entropy of electrons in the metal, F is
Faraday’s constant, and � is the absolute Seebeck coefficient of the
metal. In this equation G(T) is a universal function, i.e. the same for
all materials. In the limit of infinite number density both S and �
become zero for a degenerate free electron Fermi gas. This implies
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that G(T) is also zero. Since G(T) is a universal function, if G(T) must
be zero for one isotropic material it is true for all isotropic materials,
and one concludes that

S = −F� (2)

for all isotropic materials. In plain language this relationship means
that the partial molar entropy of electrons in a metal is essentially
equivalent to the absolute Seebeck coefficient of the metal.

Earlier work also concluded that the partial molar entropy of
the electron and the absolute thermoelectric power are essentially
equivalent [2,3]. The restriction to isotropic materials has been dis-
cussed by Tykodi [2].

As noted above, the relationship summarized in Eq. (2) was
derived by considering the thermodynamic properties of a free
electron Fermi gas. However, it is good practice to validate a sci-
entific result using more than one line of evidence. Therefore, the
present paper takes this analysis one step further to consider the
jellium model of electronic structure, which is more similar to a real
metal than the free electron model. The jellium model answers cer-
tain objections that could be raised against the free electron Fermi
gas model.

2. Theoretical development

Because G(T) is a universal function for all materials, the ques-
tion of whether a particular method of evaluating G(T) is valid or
not depends, in part, on what one means by the term “material”.
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If one is using a theoretical construct for the test material then an
important question is whether the theoretical material has prop-
erties that are sufficiently similar to real materials to consider the
material as a valid test case. For example, if the argument from Ref.
[1] for Eq. (2) of the present paper were to fail, it would be because
the physical model upon which it was built (a strongly degener-
ate free electron Fermi gas) had somehow failed to capture some
essential feature of real materials.

The free electron Fermi gas differs from real conductors in sev-
eral respects. (1) It does not include electron–phonon interactions.
(2) It does not include interactions of electrons with a periodic
lattice. (3) It does not include electron–electron interactions.

Although some investigators may  consider that an analysis of
the problem based on the free electron Fermi gas is sufficient to
validate Eq. (2), (the present author included,) for other investi-
gators the differences between the free electron gas model and
real materials could open objections to using this model to validate
Eq. (2). In particular one could ask “Is the degenerate free electron
Fermi gas similar enough to real materials to be used to validate
Eq. (2)?” Therefore, let us examine the three issues above, starting
with electron–phonon interactions.

It is well known that acoustic properties and electronic structure
vary between one material and another. Clearly, electron–phonon
coupling must therefore vary between one material and another,
and since G(T) does not depend on the material, it must mean that
G(T) does not depend on electron–phonon interactions.

Next, let us consider the interactions of electrons with a peri-
odic lattice. Lattice properties vary greatly from one conductor to
another. Some conductors, such as liquid metals, do not even have
a periodic lattice. Therefore, G(T) cannot depend on lattice period-
icity.

There is still the possibility that G(T) could depend, in a general
way, on the existence of a background of positive charge which
interacts with the electrons, even if lattice periodicity is not a fac-
tor. Therefore, if one is to go beyond the free electron Fermi gas
model to validate Eq. (2) one should use a model in which elec-
trons interact with a background of positive charge. One should also
include electron–electron interactions. The simplest system which
includes these interactions is the uniform electron gas model, also
known as the jellium model. In this model electrons interact with
each other as well as a uniformly distributed positive charge.

The thermodynamics of this model can be analyzed in the light
of a landmark paper by Kohn and Sham [4]. That paper builds upon
earlier results from Hohenberg and Kohn [5] to derive a set of
equations they describe as a Hartree–Fock method, corrected for
correlation effects, and applies these results, together with a finite
temperature generalization from Mermin [6] to analyze the ther-
modynamics of an interacting Fermi gas. In Section 3 of [4] the
authors show that within the approximations employed in their
paper the thermodynamics of an electron gas in a potential v(r) can
be treated in much the same way as a free particle system in an
effective potential shifted relative to that of a free particle system
of the same number density.

At high number density the energy per electron of a homoge-
neous electron gas in the ground state is given by:

E = AF

r2
s

− BE

rs
+ CC ln(rs) − DC (3)

where the term containing AF is the energy of a degenerate free
electron gas, the term containing BE is the exchange energy, the
terms containing CC and DC represent the correlation energy, and
rs is the Wigner–Seitz radius, which in the case of a jellium is the
radius of a sphere whose volume is equal to the mean volume per
electron. In atomic units, AF and BE have values of 2.21 and 0.916
respectively. The value of CC is variously quoted as 0.0313 or 0.0622,

depending on the source, and the value of DC is variously quoted as
0.115 or 0.096, depending on the source [7–10].

If N is the total number of electrons then the total energy of the
ground state is

ETotal = NAF

r2
s

− NBE

rs
+ NCC ln(rs) − NDC (4)

Considering the relationship between the Wigner–Seitz radius, par-
ticle number, and volume

4�

3
r3
s = V

N
(5)

one can re-write the total energy as

ETotal = N5/3AF
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Assuming that V is constant, the Fermi level at 0 K is

�T=0 = ∂Etotal

∂N
(7)
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(9)

The functional form of this expression is similar to that of the
energy per electron (Eq. (3)) but with different constants. For exam-
ple, it uses 5AF/3 in place of AF. The leading term in Eqs. (8) and (9)
is the zero temperature Fermi level of the degenerate free elec-
tron Fermi gas. One can see by inspection that as rs approaches
zero the free particle term dominates, and the other terms become
negligible by comparison.

Given the fact that the electron density in a jellium is uniform,
it seems reasonable to assume that the exchange and correlation
energies of low-lying excited states should not be greatly different
from those of the ground state. If this were strictly true, then the
energy level spacing would be the same as the free particle spac-
ing at the same density. In this case the density of states (which
is inversely proportional to the energy level spacing) will show
the same limiting form as the density of states of the free elec-
tron Fermi gas, and the analysis in Ref. [1] applies, leading to the
same conclusion as before, namely that Eq. (2) of the present paper
is valid.

Taking a different approach for estimating the density of states
near the zero-temperature Fermi level, assume that the energy of
promoting an electron from the highest occupied orbital (the zero
temperature Fermi level) to the lowest unoccupied level is the same
as the difference in energy between an N electron jellium and an
N + 1 electron jellium. This naïve assumption probably not strictly
valid, but let us see where it leads

�EN,N+1 = ETotal,N+1 − ETotal,N = ∼∂�T=0

∂N
(10)
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