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Abstract

The present paper investigates the numerical simulation of steady laminar incompressible natural convection heat transfer in an
enclosed cavity that is filled with a fluid-saturated porous medium. The bottom wall is subjected to a relatively higher temperature than
the top wall while the vertical walls are considered to be insulated. The flow field is modeled upon incorporating different non-Darcian
effects, such as the convective term, Brinkman effect and Forchhiemer quadratic inertial effect. Moreover the two-equation model is used
to separately account for the local fluid and solid temperatures. The numerical solution is obtained through the application of the finite
volume method. The appraisals of the sought objectives are performed upon identifying key dimensionless groups of parameters. These
dimensionless groups along with their operating domains are: Rayleigh number 1 6 Ra 6 400, Darcy number 10�4

6 Da 6 10�3, effec-
tive fluid-to-solid thermal conductivity ratio 0.1 6 j 6 1.0, and the modified Biot number 1 6 v 6 100. The non-Darcian effects are first
examined over a broad range of Rayleigh number. Next, the implications of the group of parameters on the flow circulation intensity,
local thermal non-equilibrium (LTNE) and average Nusselt number are highlighted and pertinent observations are documented.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Natural convection in a fluid-saturated porous medium
is of significant interest to researchers owing to its various
applications in different fields such as geothermal energy
modeling, thermal insulation material, cooling of electronic
devices and solar receivers to name a few. Several excellent
monographs summarizing the state-of-the-art available in
the literature testify to the maturity of this area, see for
example, Nield and Bejan [1], Ingham and Pop [2], Vafai
[3], Pop and Ingham [4], Bejan and Kraus [5], Ingham
et al. [6] and Bejan et al. [7].

The buoyancy-driven convection associated with a cav-
ity heated from below brings about patterns of convection
cells. In each cell, the fluid rotates in a closed orbit and the
direction of rotation alternates with successive cells. This
phenomenon is conventionally referred to in the literature
as the Bénard convection. Such a convection phenomenon
also receives a broad attention owing to the inherited
hydrodynamic fluid stability. The critical Rayleigh number,
which signals the onset of natural convection, was first
reported by Lapwood [8] to be equal to 4p2 for a Darcy
fluid flow in a porous medium bounded between two infi-
nite horizontal surfaces maintained at two different isother-
mal temperatures.

The presence of a porous medium inside the cavity hin-
ders the buoyancy-driven activities. In essence, the momen-
tum transport process in a porous medium is governed by
several inherited phenomena such as the non-Darcian
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effects. These non-Darcian effects represent deviations from
the familiar Darcy�s law. Such non-Darcian effects include
the viscous and quadratic inertial effects and the spatial-
porosity variation effect. In addition, the modeling of the
energy transport mechanism in a porous medium has its
own share of challenging fronts. For example, the flow
through the tortuous paths of a porous structure offers flow
recirculation and mixing, which is classified in the literature
under thermal dispersion effect. Moreover, modeling of a
porous medium transport coefficient, i.e., energy carrier
involves various presumptions and theories. Such chal-
lenges serve as ingredients for a wide debate and discussion
over the appropriate modeling of the various effects, which
is reflected in the large number of publications cited in the
literature in this regard. The work of Kaviany [9], Nield
and Bejan [1] and Vafai [3] can be cited as lead references
in this regard.

The implications of the quadratic inertia term and the
viscous term on natural convection heat transfer were tack-
led, for instance, by Chan et al. [10] and Lauriat and Pra-
sad [11]. Also, the impact of Prandtl number on the Bénard
convection was numerically investigated by Georgiadis and
Catton [12] and Lage et al. [13]. Vasseur et al. [14] con-
ducted a numerical simulation using the Darcy–Brinkman
model to study the flow and thermal behaviors in a shallow
cavity subjected to a uniform heating and cooling through
opposite walls. Their results demonstrated the dependence
of the Nusselt number predictions on the Darcy–Rayleigh
number and Darcy number. Furthermore, Beji and Gobin
[15] and Al-Amiri [16] have discussed the contribution of
thermal dispersion to the overall natural convection heat

transfer mechanism. Such an effect is customarily modeled
as a diffusive term added to the effective thermal conductiv-
ity of the fluid phase. Both studies reported an appreciated
increase in the computed Nusselt number upon incorporat-
ing thermal dispersion effect and better agreement with
experimental results as well.

It is customary to handle the modeling of transport phe-
nomena inside porous media using the volume-averaging
method. The work of Vafai and Tien [17] is widely recog-
nized for using the volume-averaging technique coupled
with semi-empirical formulas to arrive at the two-dimen-
sional momentum equation, which would complement
the empirical energy conservation equation. The work of
Khashan et al. [18] has elaborated on the implementation
of the above method.

Our review of literature has indicated that most of the
reported studies on Bénard convection had resorted to
local thermal equilibrium (LTE) model, which presumes
that the fluid and the solid phases are defined by a unique
temperature at a given location within the porous medium.
Such an assumption cannot be justified, however, when the
temperature difference between the two phases is consid-
ered a crucial design parameter such as, for example, in
porous metal heat exchangers and nuclear fluid rods placed
in a coolant bath (see [19]). When the local fluid and solid
phase temperatures are accounted for separately, two
energy equations emerge to represent each phase. These
equations supplemented with an additional term that mod-
els the modes of heat transfer between the two phases. In a
series of studies spear-headed by Amiri and co-workers
[20–22], the validity of local thermal equilibrium assump-

Nomenclature

A aspect ratio, L/H
asf specific surface area (m2/m3)
cf fluid specific heat (J/(kg K))
Da Darcy number, K/H2

F inertia coefficient
hsf interstitial heat transfer coefficient (W m�2 K�1)
H cavity height (m)
k thermal conductivity (W m�1 K�1)
km modified thermal conductivity, ekf + (1 � e)ks
K permeability (m2)
L cavity length (m)
P dimensionless pressure, pH 2=qfa

2
m

p pressure (kPa)
Pr Prandtl number, mf/af
Ra Rayleigh–Darcy number, gb(Th � Tc)H

3Da/
mfam

T intrinsic average fluid or solid temperature (K)
u, v interstitial velocity components (m/s)
v interstitial velocity vector (m/s)
V dimensionless interstitial velocity vector, vH/am
U, V dimensionless interstitial velocity components

x, y spatial axial and transverse coordinates (m)
X dimensionless axial coordinates, x/H
Y dimensionless radial coordinates, y/H
af thermal diffusivity (k/qc)f
am modified thermal diffusivity, km/(qc)
v modified Biot number, hsfasfH

2/km
e porosity (m3/m3)
j effective fluid-to-solid thermal conductivity

ratio, kfeff/kseff
mf fluid kinematic viscosity (m2 s�1)
qf fluid density (kg/m3)
h dimensionless temperature, (T � Tc)/(Th � Tc)
W dimensionless stream function

Subscripts

c cold
eff effective
f fluid
h hot
s solid
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