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a  b  s  t  r  a  c  t

This  paper  addresses  the  importance  of the  boundary  conditions  for the charge  conservation  equation
in  the modeling  of fuel  cells.  In this  context,  we analyze  the  charge  transport  in  an  electric  conductor,
aiming  to  determine  whether  constant  current  and  constant  potential  boundary  conditions  can be  inter-
changed  without  disturbing  the  local  current  density  distribution  in the cell.  Their  interchangeability  can
be  described  with  a dimensionless  number,  referred  to as  the  “interchangeability  number”,  which  cap-
tures the  relevant  operating,  geometrical  and  material  parameters.  The  effect  of  the  interchangeability
number  is further  explored  in  a model  for  non-isothermal  two-phase  flow in  a  proton  exchange  mem-
brane  fuel cell,  for which  is  it verified  that  the  interchangeability  number  should  be much  less  than  3, in
order  to  ensure  that  the  prediction  for  the local  current  density  distribution  at  the  catalyst  layers  remains
the  same  regardless  of  galvanostatic  or potentiostatic  boundary  conditions.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Mathematical modeling of fuel cells with microscopic equations
of change often involves the potential of one or two phases: elec-
trons in the solid phase and ions in the electrolyte. The conservation
of charge is usually formulated as the divergence of the current den-
sity, where the current density is postulated to follow Ohm’s law;
i.e. as a linear relation of the potential in a particular phase. The
conservation of charge is expressed as an elliptic partial differential
equation of second order in two- or three-dimensional geometries,
which can be solved once the functional form of the electrical con-
ductivity – usually a constant, function and/or tensor that accounts
for differences in through- and in-plane conductivities – has been
determined and the necessary boundary conditions (BCs) invoked.
The latter typically takes the form of a Dirichlet condition with a
specified potential or a Neumann condition with a specified current
or insulation.

For fuel cells, mathematical models have been reported with
both constant potential [1–12] (referred to as potentiostatic BC)
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and constant current BCs [13–18] (referred to as galvanostatic BCs).
Typically, the two kinds of BCs do not have any distinct advantage
over each other to predict the performance of a cell operated under
constant inlet velocities; however, once a stoichiometric flow con-
dition – which in turn depends on the average current density –
is introduced, the use of the potentiostatic condition requires an
iterative approach in order to determine the correct inlet velocity
that corresponds to the prescribed stoichiometry [19,3,7]. In such
a situation, the galvanostatic BC is more advantageous since the
inlet velocities can be directly determined without any need for
numerical iterations.

The galvanostatic BC, however, has been found to disturb the
local current density distribution in the cell [20,13]. This is espe-
cially the case if the current density distribution at the bipolar
plate is uneven – usually its exact functional form is unknown a
priori to computations. This implies that the two  kinds of BCs are
not interchangeable by default. In this context, Meng and Wang
[13] found that increasing the electronic conductivity of the bipo-
lar plate reduces the difference in the current density distribution
under the two kinds of BCs; a similar argument has been reported in
[18] as well. However, a systematic mathematical analysis of charge
transport is lacking in order to determine the conditions that have
to be satisfied in order to ensure interchangeability of BCs.

The aim of this paper is therefore to address galvanostatic
and potentiostatic BCs in multidimensional fuel cell models with
a view to determining when these can be interchanged without
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influencing the current density distribution at the catalyst layer at
leading order. This is accomplished by considering a conductive
layer in which conservation of charge together with Ohm’s law is
solved analytically. A dimensionless number that characterizes the
interchangeability of galvanostatic and potentiostatic BCs for an
electrical conductor is then identified. The results of the analysis
are then further studied in the context of an earlier non-isothermal
two-phase flow model for a proton exchange membrane fuel cell
(PEMFC).

2. Mathematical formulation

We  consider steady-state conservation of charge for a slender
two-dimensional rectangle that occupies 0 ≤ x ≤ L, −h ≤ y ≤ 0 and is
subject to insulating BCs at x = 0 and L, a galvanostatic BC at y = 0
and a prescribed current density distribution at y = − h:

�xx + �yy = 0 (1)

�x(0,  y) = 0 (2)

�x(L, y) = 0 (3)

−��y(x, 0) = iapp (4)

−��y(x, −h) = I(x) (5)

�(0, 0) = E0 (6)

Here, i is the current density, � is the electronic potential, h is the
thickness, L is the length, iapp is the applied current density, � is
the electronic conductivity, E0 is a reference potential that is pre-
scribed in an arbitrary point, here taken at (x, y) = (0,  0), and I(x) is
an arbitrary current density distribution that is constrained by the
integral

1
L

∫ L

0

I(x)dx = iapp, (7)

so as to conserve current globally.
In the above formulation, a galvanostatic BC is specified at the

top, y = 0. If a potentiostatic condition in the form of a specified
potential had instead been invoked, there would have been a uni-
form electric potential at the top. To explore the interchangeability
of the BCs, we shall employ a galvanostatic BC whilst seeking the
conditions that also ensure a uniform potential distribution at the
top at leading order; i.e. variations in the potential should be neg-
ligible. As a measure of the uniformity of the potential at y = 0, we
choose the average absolute deviation, �:

�:=1
L

∫ L

0

∣∣E0 − �(x, 0)
∣∣dx; (8)

note that we take �(0, 0) as the reference. The layer we  consider
here represents a bipolar plate or a current collector in a fuel cell,
and we seek to determine the conditions for which � � E0 .

3. Analysis

Nondimensionalizing the above set of equations with

x̃ = x

L
, ỹ  = y

h
, �̃ = � − E0

��
, Ĩ(̃x) = I(x)

iapp
, ε = h

L
,

�̃ = �

E0
(9)

determining the scale for the potential drop, ��  ∼ iapph/�, from Eq.
(4), and then solving the charge conservation equation by separa-
tion of variables yields

�̃(x̃, ỹ) = −ỹ + 2
�ε

∞∑
n=1

1 − cos(n�x̃) cosh(n�εỹ)
n sinh(n�ε)

×
∫ 1

0

Ĩ(x′) cos(n�x′)dx′ (10)

The dimensionless average absolute deviation of the electric
potential at ỹ = 0, �̃, can be written as

�̃ = ��

E0

∫ 1

0

∣∣�̃(x̃, 0)
∣∣dx̃ (11)

Substituting the analytical solution and scale ��, we find

�̃ = 2iapph

�E0�ε

∫ 1

0

∣∣∣∣∣
∞∑

n=1

1 − cos(n�x̃)
n sinh(n�ε)

∫ 1

0

Ĩ(x′) cos(n�x′)dx′
∣∣∣∣∣dx̃ (12)

≤ 2iapph

�E0�ε

∞∑
n=1

1
n sinh(n�ε)

(∫ 1

0

∣∣∣̃I(x′) cos(n�x′)
∣∣∣dx′

)
(13)

Defining a dimensionless number �,  which we shall refer to as
the interchangeability number, by

� ≡ L2iapp

h�E0
, (14)

we have

�̃ ≤ 2ε�

�

∞∑
n=1

1
n sinh(n�ε)

(∫ 1

0

∣∣∣̃I(x′) cos(n�x′)
∣∣∣dx′

)
. (15)

Now, we require �̃ � 1, which would certainly be satisfied if

2ε�

�

∞∑
n=1

1
n sinh(n�ε)

(∫ 1

0

∣∣∣̃I(x′) cos(n�x′)
∣∣∣dx′

)
� 1, (16)

From the Cauchy–Schwarz inequality, we know that∫ 1

0

∣∣∣̃I(x′) cos(n�x′)
∣∣∣dx′ ≤

∫ 1

0

∣∣∣̃I(x′)
∣∣∣dx′

∫ 1

0

∣∣cos(n�x′)
∣∣dx′ (17)

∫ 1

0

∣∣∣̃I(x′) cos(n�x′)
∣∣∣dx′ ≤

∫ 1

0

∣∣∣̃I(x′)
∣∣∣dx′ (18)

In fuel cells, it is always the case that Ĩ(x̃)≥0, which then together
with Eq. (7) implies that∫ 1

0

∣∣∣̃I(x′)
∣∣∣dx′ = 1 (19)

giving that

2ε�

�

∞∑
n=1

1
n sinh(n�ε)

� 1. (20)

i.e.

� � �

2ε
∑∞

n=1(1/n sinh(n�ε))
. (21)

Ideally, there would be a closed-form expression for the sum
on the right-hand side; however, there is not, and the next
best alternative is to bound it with one. Note that we want to
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