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a  b  s  t  r  a  c  t

Kjelstrup  et  al.  recently  applied  non-equilibrium  thermodynamics  to analyze  the  thermodynamic  rela-
tionships  for  thermo-electrochemical  effects  in  certain  electrochemical  cells  [Electrochim.  Acta  99  (2013)
166–175].  The  present  paper  considers  whether  one  can  extend  such  relationships  to  establish  equiva-
lence  between  certain  non-equilibrium  thermodynamic  properties,  such  as  transported  entropies,  and
equilibrium  thermodynamic  properties,  such  as  partial  molar  entropies.  If  so  it would  enable  the  use
of thermo-electrochemical  measurements  to  determine  certain  quantities  that have heretofore  been
considered  “un-measurable”,  such  as partial  molar  entropies  of  ions  in  solution.  It  would  also  provide
a unifying  principle  between  non-equilibrium  thermodynamics  and  reversible  thermodynamics,  and  it
could  lead  one  to consider  the  possibility  of  an  additional  law  or principle  of  thermodynamics.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Kjelstrup et al. recently published a paper in this journal on
thermo-electrochemical effects, focusing on the Peltier effect and
the Seebeck coefficient in a polymer electrolyte fuel cell [1]. The
authors applied the methods of non-equilibrium thermodynamics
to determine thermodynamic relationships for the process

1
2

H2 → H+ + e− (1)

where for the time being, I have omitted phase-specifying sub-
scripts from the symbols for the reactant and two products. From
non-equilibrium thermodynamic theory they derived expressions
that included quantities such as SH2 , S∗

H+ , and S∗
e− , where the * super-

script on certain quantities specifies that they are “transported
entropies” which are not necessarily considered to be equilibrium
thermodynamic quantities.

In this comment I propose to extend the thermodynamic anal-
ysis of thermo-electrochemical processes one step further, i.e. to
consider a possible relationship between transported entropies,
which are quantities from non-equilibrium thermodynamics, and
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partial molar entropies, which are quantities from equilibrium
thermodynamics.

2. Theoretical development

Consider the process of transferring electrons between two
homogeneous isotropic conductors A and B.

e−
A → e−

B (2)

If carried out slowly under isothermal conditions the reaction is
reversible, and the entropy of the process is therefore related to
the heat of reaction according to the following expression

�S  = Qrev

T
(3)

From fundamental chemical thermodynamics the entropy of trans-
fer of a component from one phase to another equals to the
difference in partial molar entropies, which for the transfer of elec-
trons between two conductors is

�S  = Se−,B − Se−,A (4)

where Se−,B and Se−,A are the partial molar entropies of the electron
in phases B and A, respectively.
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The heat of the same process is also given by the following ther-
moelectric relationships

Qrev = F˘A − F˘B = FT�A − FT�B = TS∗
e−,B − TS∗

e−,A (5)

where F is Faraday’s constant, ˘A and ˘B are the Peltier coefficients
for phases A and B, respectively, �A and �B are the absolute Seebeck
coefficients for phases A and B, respectively, and S∗

e−,A and S∗
e−,B are

the transported entropies for electrons in phases A and B, respec-
tively. The quantities � and S∗

e− are essentially equivalent, other
than a difference of sign and a multiplication of � by Faraday’s con-
stant. The asterisk in the notation is used to distinguish transported
entropies from partial molar entropies. The symbol � is used in this
paper to denote the absolute Seebeck coefficient rather than the
more customary symbol S to avoid confusing it with the symbol
for partial molar entropies. The absolute Seebeck coefficient is also
known as the absolute thermoelectric power.

Calculating the entropy of the process from the reversible heat
given in Eq. (5) we have

�S  = Qrev

T
= F˘A

T
− F˘B

T
= F�A − F�B = S∗

e−,B − S∗
e−,A (6)

Equating the entropy in Eqs. (4) and (6), one obtains the following
relationship between partial molar entropies and absolute Seebeck
coefficients for electrons in any two arbitrarily chosen conductors.

Se−,B − Se−,A = F�A − F�B (7)

For this equation to hold for all possible pairs of conductors one
must necessarily conclude that

S = −F� + G(T) (8)

where the subscripts have been removed from symbols S and �
to indicate that the relationship holds for electrons in all conduc-
tors. The function G(T) may  depend on the temperature but not
on the material. It is therefore a universal function, so evaluat-
ing G(T) for even a single case would establish it for all cases. Eq.
(8) was obtained previously, and its validity depends only on the
macroscopic laws of reversible and irreversible thermodynamics
[2,3].

If one could evaluate G(T) it would provide a way to evaluate the
partial molar entropy of electrons in conductors. Unfortunately, one
cannot evaluate G(T) using the known laws of macroscopic ther-
modynamics. However, it might be possible to evaluate G(T) by
stepping outside of the laws of thermodynamics and applying other
methods. Here, I will apply microscopic theory to the problem.

In the spirit of this approach, consider the statistical ther-
modynamics of the degenerate free electron Fermi gas. By a
rearrangement of Eqs. (8.2.1) and (8.2.3) from [4] the electrochem-
ical potential is given by

εf = C1n2/3 − C2T2

2n2/3
+ . . . (9)

where n is the electron number density, and factors C1 and C2
depend on some physical and numerical constants. In using this
expression one must keep in mind that the electrochemical poten-
tial, the Fermi level (�f), and the partial molar Gibbs free energy
are synonymous for an ensemble of Fermions. The partial molar
entropy is given by the well-known relationship between partial
molar entropy and the temperature coefficient of partial molar
Gibbs free energy.

S = −∂εf

∂T
= C2T

n2/3
(10)

Only the lowest-order non-zero term is retained in Eq. (10).
Turning to the absolute thermoelectric power of the same model

system, using Eqs. (8.2.1), (8.2.3), (8.7.17), (8.7.18), and (8.7.19)

from [4] one obtains, after rearrangement, expansion in a Taylor
series, and truncation to the lowest-order term:

� = − C3T

n2/3
(11)

where C3 depends on some physical and numerical constants and
assumptions related to collisional relaxation of electrons in the
solid.

Combining Eqs. (8), (10) and (11) yields

C2T

n2/3
= F

C3T

n2/3
+ G(T) (12)

Taking the limit as number density approaches infinity

lim
n→∞

C2T

n2/3
= 0 = lim

n→∞
F

C3T

n2/3
+ G(T) = 0 + G(T) (13)

or

G(T) = 0 (14)

from which one can further conclude that

S = −F� = S∗ (15)

The negative sign in Eq. (15) arises from the fact that electrons are
negatively charged. Tykodi has also reached a similar conclusion to
Eqs. (14) and (15) using different methods [3].

The validity of Eq. (15) depends on relatively mild conditions,
most importantly that both the thermoelectric power and the par-
tial molar entropy have the limiting behaviors described in Eq.
(13). One could also consider whether a model which includes
electron–electron interactions, such as a jellium model, would
demonstrate similar limiting behavior to Eq. (13) at high number
density, namely that both the partial molar electronic entropy and
thermoelectric power would approach zero at infinite number den-
sity. If so it would further validate the line of thought presented
above.

One must keep in mind that G(T) is a universal function. Con-
sequently, it is only necessary to evaluate it for a single material
in order to establish it for all materials, even if the other materi-
als would not conform to simple models such as the free electron
model or the jellium model. Thus, one need not consider com-
plicating factors such as lattice periodicity or electron-phonon
interactions in order to demonstrate the validity of Eq. (15).

3. Applications

If Eq. (15) is valid it would enable one to perform an electro-
chemical procedure that, at the present time, would seem to be the
only practical way  to determine partial molar entropies of ions in
solution. Consider the following generic electrochemical reaction:

Mmetal → M+
solution + e−

metal (16)

The entropy of reaction is given by combining the partial molar
entropies:

�S  = SM+,solution + Se−,metal − SM,metal (17)

Given that an isothermal electrochemical Peltier experiment can,
in principal, be performed under conditions that approach thermo-
dynamic reversibility (e.g. in the limit of zero current) the entropy
can also be calculated from the electrochemical Peltier heat:

�S  = Qreversible

T
= QPeltier

T
(18)

Substituting this result into Eq. (17) and rearranging the equation
one obtains:

SM+,solution = QPeltier

T
+ SM,metal − Se−,metal (19)
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