Development and characterization of InDel markers for Lupinus luteus L. (Fabaceae) and cross-species amplification in other Lupin species

Claudia E. Osorio ${ }^{\text {a }}$, Joshua A. Udall ${ }^{\text {b }}$, Haroldo Salvo-Garrido ${ }^{\text {a }}$, Iván J. Maureira-Butler ${ }^{\text {a,c, } *}$
${ }^{\text {a }}$ Centro de Genómica Nutricional Agroacuicola, Las Heras 350, Temuco, La Araucanía 4781158, Chile
${ }^{\text {b }}$ Brigham Young University, Plant and Wildlife Science Department, 150 E 1230 North, Provo, UT 84602, USA
${ }^{\text {c }}$ Instituto de Producción y Sanidad Vegetal, Universidad Austral de Chile, Valdivia, Chile

A R T I C L E I N F O

Article history:

Received 21 July 2017
Accepted 13 November 2017
Available online 17 November 2017

Keywords:

Accession
Genetic diversity
Genomic reduction libraries
In silico polymorphic markers
Insertion-deletion marker
Lupinus hispanicus
Lupinus mutabilis
Next generation sequencing
Plant domestication

Abstract

Background: Strong artificial selection and/or natural bottle necks may limit genetic variation in domesticated species. Lupinus luteus, an orphan temperate crop, has suffered diversity reductions during its bitter/sweet alkaloid domestication history, limiting breeding efforts and making molecular marker development a difficult task. The main goal of this research was to generate new polymorphic insertion-deletion (InDel) markers to aid yellow lupin genetics and breeding. By combining genomic reduction libraries and next generation sequencing, several polymorphic InDel markers were developed for L. luteus L. Results: A total of 118 InDel in silico polymorphic markers were identified. Eighteen InDel primer sets were evaluated in a diverse L. luteus core collection, where amplified between 2-3 alleles per locus. Observed heterozygosity (HO; 0.0648 to 0.5564) and polymorphic information content (PIC; 0.06 to 0.48) estimations revealed a moderate level of genetic variation across L. luteus accessions. In addition, ten and nine InDel loci amplified successfully Lupinus hispanicus Boiss \& Reut, and Lupinus mutabilis Sweet, respectively, two L. luteus close relatives. PCA analysis identified two L. luteus clusters, most likely explained by the domestication species history. Conclusion: The development of InDel markers will facilitate the study of genetic diversity across L. luteus populations, as well as among closely related species.

© 2017 Pontificia Universidad Católica de Valparaíso. Production and hosting by Elsevier B.V. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The genus Lupinus comprises more than 200 annual and perennial herbaceous species growing in a wide range of climatic and soil conditions [1]. Lupins have been described as functional food, given the association between their consumption and reduced risk of hypercholesterolaemia, diabetes, and hypertension [2]. Lupinus luteus, an old world cultivated lupin, shows higher protein seed content [3] and twice the amount of seed cysteine and methionine than most lupin species [4]. In addition, evaluations of its functional and physicochemical properties have suggested yellow lupin proteins could improve texture and nutritional quality when incorporated in food products [5].

Although some molecular tools have been developed to aid yellow lupin's genetics $[6,7,8]$, an apparent low level of microsatellite polymorphisms [6,7] have suggested the need of diversifying and

[^0]increasing marker availability for this species. During lupin domestication, a reduced number of naturally occurring mutants were used as progenitors to develop low alkaloid/no pod shattering varieties. This strategy, although successful, reduced the amount of genetic variation contained within lupin breeding populations [9,10]. Reduction of diversity not only limits the generation of better adapted varieties, but also the presence of polymorphic sites in modern breeding lines [11]. Insertions and deletions (InDels) are the second most common type of polymorphisms across species [12], and are distributed throughout the entire genome [12,13]. InDels may result from mechanisms such as transposable elements, slippage in simple sequence replication, and unequal crossover [14]. Due to their high-density occurrence, cost-effectiveness, and ease genotyping, InDels have been increasingly recognized as an important source of molecular markers [12]. InDel markers have been a valuable complement to SNPs and SSRs in Phaseolus vulgaris L. and Glycine max (L) Merr. [15,16], and haplotype differences in presence/absence variation may explain heterosis and the extraordinary phenotypic diversity in maize [17]. In this study, we present a novel set of 18 validated polymorphic L. luteus InDel markers generated by combining
genomic reduction libraries and next generation sequencing. We also evaluated their ability to cross amplify Lupinus hispanicus and Lupinus mutabilis, two close relative lupine species.

2. Materials and methods

DNA from two L. luteus accessions, Core 18 and Core 227 (Table S1), was extracted from young leaves using CTAB buffer [18]. DNAs were further purified and quantified using DNeasy mini spin columns (Qiagen) and a Qubit® 2.0 Fluorometer (Life Technologies), respectively. Genomic reduction was accomplished using a previously described protocol [19]. Briefly, 450 ng of total genomic DNA, of each DNA sample, was separately double-digested using 3 U of the restriction enzymes EcoRI and Bfal (New England Biolabs, Beverly, MA). DNA fragments were then ligated with 5 '-TEG biotinylated/ 3'-phosphorylated EcoRI adapters and 3'-phosphorylated BfaI adapters [20]. Small DNA fragments were excluded from the samples using Chroma Spin-400 columns (ClonTech, Mountain View, CA). DNA fragments containing the biotin labeled EcoRI adapters were isolated using M-280 streptavidin beads (Invitrogen, Carlsbad, CA) and resuspended in $100 \mu \mathrm{~L}$ of TE [20]. A sample specific PCR amplifications was conducted using $1 \mu \mathrm{~L}$ of streptavidin-cleaned DNA fragments and primers containing complementary EcoRI and BfaI adaptor + restriction DNA and unique 5^{\prime} barcode sequences [20]. Amplifications were carried out in $50 \mu \mathrm{~L}$ PCR reactions using 1X Advantage HF 2 PCR Master Mix (ClonTech, Mountain View, CA) and $0.2 \mu \mathrm{M}$ of each primer. Thermocycling profiles and amplified DNA visualization were conducted following standard conditions [19,20]. DNA concentrations for each PCR reaction were measured fluorometrically using a

Quant-iT picogreen dye (Invitrogen, Carlsbad, CA) and pooled in equimolar amounts. DNA from a pooled PCR samples was separated electrophoretically in a 1.5% Metaphor agarose gel (Cambrex BioScience, East Rutherford, NJ), and visualized using ethidium bromide staining. A single 500-650 bp gel slice was removed and DNA fragments extracted using a Qiaquick column (Qiagen, Germantown, MD). A single micro-bead sequencing run was conducted using a Roche-454 GS FLX and Titanium reagents (Branford, CT) at the Brigham Young University DNASC (Provo, UT). DNA reads were trimmed and separated into MID barcode pools representing the two L. luteus genotypes using the process-tagged sequences function in CLCBio Workbench v. 4.0 (Katrinebjerg). InDels were identified by combining both L. luteus sequencing pools into a single de novo assemblage. Contigs were built using the Roche Newbler assembler v. 2.3, with a minimum overlap length and identity of 50 bp and 95%, respectively. The minimum contig length was $\geq 200 \mathrm{bp}$. Custom perl scripts were used to identify putative InDels within contigs when the coverage depth at the InDel was ≥ 10 and the minor allele frequencies were at least 20% of the reads. InDels explaining 1-bp difference and those located within homopolymer repeats were discarded. Flanking primer pairs were designed for InDel containing contigs using Primer3 implemented in Geneious® 6.1.8 [21] with expected amplicon lengths between 150-500 bp and an optimal annealing temperature (Ta) of $60^{\circ} \mathrm{C}$. Oligonucleotides were synthesized by IDT (Integrated DNA Technologies, Inc.).

Eighteen primer pairs flanking InDels of at least 3 bp (Table 1) were randomly selected to genotype 164 L. luteus accessions (Table S1) belonging to a seed core collection previously reported [6,7]. The L. luteus accessions were from several origins (Poland, Russia,

Table 1
Characteristics and genetic properties of 18 newly developed InDel markers for Lupinus luteus L.

Primer	Sequence	Allele size (bp)	$\mathrm{Ta}(\mathrm{C})$	A	PIC	Ho	GenBank
GR1_INDEL02120	F: TCTGGAGGAAATAAAAAACTGTAGG	159-162-163	60	3	0.22	0.2343	KX778774 KX778775 KX778776
	R: GCAACGATAATATCCATAACCGTC						
GR1_INDEL15589	F: GTGTACTAAACTCAAGCCAATWTATGC	140-144	58	2	0.27	0.3287	$\begin{aligned} & \text { KX778777 } \\ & \text { KX778778 } \end{aligned}$
	R: GATAACAAAATTTGTATGGCATTGAC						
GR1_INDEL21885	F: GATTGTCGTGGATCAGAAGC	181-192	57	2	0.09	0.0933	$\begin{aligned} & \text { KX778779 } \\ & \text { KX778780 } \end{aligned}$
	R: ATAAACCAATGAATAAATGTTGAAC						
GR2_INDEL06804	F: TCCAGACAGAATTTTTGTAACTTCAAAGCA	320-323	60	2	0.06	0.0648	$\begin{aligned} & \text { KX778785 } \\ & \text { KX778786 } \end{aligned}$
	R: CCACGAAGGAAGCCACTTGAATCC						
GR2_INDEL08379	F: TGGCATACCTGAAATTATTATCAAGCTTTT	524-537	60	2	0.08	0.0873	$\begin{aligned} & \text { KX778789 } \\ & \text { KX778790 } \end{aligned}$
	R: TGGCCTGACCGAGGCTTGGC						
GR2_INDEL10199	F: TGGCTGGTTTGAAAGTCTATTTAAAGGCAA	428-437	60	2	0.48	0.5564	$\begin{aligned} & \text { KX778793 } \\ & \text { KX778794 } \end{aligned}$
	R CACCTTGAGACTTCCTTGTTCCTTACTTAC						
GR2_INDEL10592	F: TGGGAGCACATTTACGTTTCCA	414-421	60	2	0.05	0.0534	$\begin{aligned} & \text { KX778795 } \\ & \text { KX778796 } \end{aligned}$
	R ACTGTTTTATTCATAGTTGCTTAGAAAGAC						
GR2_INDEL11357	F: GGACAGAGTTATTTGGGTGGATGGGGA	250-262	60	2	0.18	0.2002	$\begin{aligned} & \text { KX778797 } \\ & \text { KX778798 } \end{aligned}$
	R: TGGCATCAAATGGAAGACCATATAGCCCC						
GR2_INDEL13347	F:CATGTCCGAGCCGGGAACATCCA	206-212-222	60	3	0.20	0.2215	KX778801
	R:CGTAAAGGACAAGAGGAAGTTTCCTACTGA						KX778802
							$\begin{aligned} & \text { KX778803 } \\ & \text { KX778804 } \\ & \text { KX778805 } \end{aligned}$
GR2_INDEL14402	F: TCTCATTCTTTGACCAATAAACCAAGACAC	317-333	60	2	0.35	0.4458	
	R:TGGAGTTATCAACAACAAGAATAGACACTC						
GR2_INDEL14515	F:CGTCGAGCCATAAAGCAAACAAGTGA	277-283	60	2	0.26	0.3141	$\begin{aligned} & \text { KX778806 } \\ & \text { KX778807 } \end{aligned}$
	R: TGTCTCATCGGAATTGGACAAGGTATTAAA						
GR2_INDEL15354	F:GCTTCACTTTGACGTCGCCAGGG	206-217	60	2	0.35	0.4589	$\begin{aligned} & \text { KX778810 } \\ & \text { KX778811 } \end{aligned}$
	R:CCTTGAAGTCGTGGTAAACATTCAAGGAGA						
GR2_INDEL03758	F:GCCCCACTGGATCCGAGAAAGACC	297-306	60	2	0.37	0.4854	$\begin{aligned} & \text { KX778783 } \\ & \text { KX778784 } \end{aligned}$
	R:TCCAAGTTGGCTAAAGCCATTGTATCCTTC						
GR2_INDEL07358	F:CCCAACTGCTTTTAACTGATCTTGGCGGG	596-612	60	2	0.37	0.4969	$\begin{aligned} & \text { KX778787 } \\ & \text { KX778788 } \end{aligned}$
	R: TCGGCTCTCCACATTGCAGCCA						
GR2_INDEL01779	F: CCACCCAAGACAGATCCATCATACA	286-309	60	2	0.26	0.3104	$\begin{aligned} & \text { KX778781 } \\ & \text { KX778782 } \end{aligned}$
	R:TGCATCACATGTGCAGCTTGGCT						
GR2_INDEL09538	F: GGCAGGCCACACAAACAGGAGG	261-276	60	2	0.18	0.2002	$\begin{aligned} & \text { KX778791 } \\ & \text { KX778792 } \end{aligned}$
	R:AAGAGGATAGAAGTGTCATTACAAGTTGTC						
GR2_INDEL12780	F: GTCAGACATACTCCAATGAGTTCAGGT	301-289	60	2	0.34	0.4308	$\begin{aligned} & \text { KX778799 } \\ & \text { KX778800 } \end{aligned}$
	R:TCTTCTCATTTAATCACATACACCATTTTG						
GR2_INDEL15167	F: TCACATCGCTTACCTCATTGTTCCGGG	292-288	60	2	0.32	0.3866	$\begin{aligned} & \text { KX778808 } \\ & \text { KX778809 } \end{aligned}$
	R:CCGTACTGGACGGTCTGAGCAGTCT						

[^1]
https://daneshyari.com/en/article/6618543

Download Persian Version:

https://daneshyari.com/article/6618543

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: ivan.maureira@uach.cl (I.J. Maureira-Butler).
 Peer review under responsibility of Pontificia Universidad Católica de Valparaíso.

[^1]: Note: $T a=$ annealing temperature; $\mathrm{A}=$ number of alleles sampled; $\mathrm{Ho}=$ observed heterozygosity; PIC $=$ polymorphic information content.

