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Abstract

The behavior of a drop cloud in thermocapillary motion in zero gravity is examined for both mono-dispersed and poly-dispersed
cases. Numerical simulations of the thermocapillary motion of two- and three-dimensional fully deformable light drops are presented.
The Navier-Stokes equations coupled with the energy conservation equation are solved by a front-tracking/finite-difference method. The
material properties of the drop fluid and the ambient fluid are different, and the interfacial tension depends on the temperature. At mod-
erate Reynolds (Re) and Marangoni (Ma) numbers, the results show that drops form layers nearly perpendicular to the temperature

gradient.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

It is well known that drops suspended in a fluid with a
temperature field move in the direction of the temperature
gradient due to thermocapillary forces. Interfacial tension
generally decreases with increasing temperature and a
non-uniform temperature field in the ambient fluid gener-
ates an interfacial tension gradient at the fluid interface
that, in turn, induces shear stresses acting on the outer fluid
by viscous forces, and thus inducing a motion of the drop
in the direction of the temperature gradient. This phenom-
enon is known as the thermocapillary migration of drops
and it can play an important role in material processing
under the microgravity condition in the space as well as
in many other scientific and engineering applications.

Following the pioneering work of Young et al. [14] who
found an analytical expression for the terminal velocity of a
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single spherical drop in the creeping flow limit, the behav-
ior of a single fluid particle in a temperature gradient has
been extensively studied and been reasonably well under-
stood. However, it is frequently necessary to deal with a
large number of drops and their collective behavior may
differ substantially from the thermocapillary migration of
a single isolated drop. The thermocapillary motion of
two drops and their interactions were first examined ana-
lytically by Anderson [1] in the limit of zero Reynolds
and Marangoni numbers. Anderson [1] showed that the
collective behavior of a droplet suspension is considerably
different from that of a single isolated drop. This result was
then confirmed by Keh and Chen [3] who studied axisym-
metric thermocapillary migration of two spherical droplets
in a creeping flow regime. Keh and Chen [4] also investi-
gated the axisymmetric thermocapillary motion of a chain
of spherical droplets in a quasi-steady state limit of con-
servation of energy and momentum using a combined ana-
lytical-numerical method. The interaction of dispersed
spherical drops in thermocapillary motion was examined
by Zhang and Davis [16] in creeping flow conditions
with a trajectory method. Keh and Chen [5] studied the
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Nomenclature

a initial drop radius (m)

ay average drop radius (m)

cp specific heat capacity (J/kg K)
c, ratio of heat capacity (c,,/cp, )

i subscript denoting drop fluid

k heat conduction coefficient (W/m K)

k ratio of heat conduction coefficient (ki/k,)
Ma Marangoni number (U,a/a,)

o subscript denoting ambient fluid

Re Reynolds number (U,a/v,)

T, reference temperature (K)

t; reference time scale (a/U,)

U, reference velocity (o7a|VT |/ tto)

Uy average reference velocity (m/s)

We Weber number (p,aU?/a,)

o thermal diffusivity (k/pc,)

Y deformation

€ deformation parameter

u dynamic viscosity (N s/m?)

U viscosity ratio (u;/ o)

v kinematic viscosity (m?%/s)

p density (kg/m>)

p density ratio (pi/po)

o interfacial tension coefficient (N/m)
0o interfacial tension coefficient at T,
or proportionality coefficient (—da/dT)
temperature gradient in undisturbed ambient
fluid

interaction of many droplets in the limit of creeping ther-
mocapillary motion and found that the terminal velocity
of gas bubbles is independent of each other if they are all
equal in size in the limiting case of zero Reynolds and
Marangoni numbers. Nas and Tryggvason [9] studied the
interaction of two droplets at moderate Reynolds and
Marangoni numbers and showed that, in contrast with
the results found in the creeping flow limit, the terminal
velocity of droplets can be strongly affected by the presence
of other droplets depending on the separation distance
between them. The reader is referred to the review papers
by Subramanian [10] and by Wozniak et al. [15] and to a
recent book by Subramanian and Balasubramaniam [11]
for a detailed discussion of analytical, numerical and exper-
imental methods about the thermocapillary motion of
drops in reduced gravity including a more complete list
of literature on the subject.

The investigations of interactions of drops discussed
above have mostly been limited to zero Reynolds and
Marangoni numbers. In many engineering applications
where thermocapillary forces are dominant, it is likely that
many drops are present and heat and mass convections are
important, i.e., Reynolds and Marangoni numbers are non-
zero. It is therefore critical to understand the overall behav-
ior of large drop systems with either mono-dispersed or
poly-dispersed cases including the effect of non-zero
Reynolds and Marangoni numbers. In the present work,
numerical simulation of equal size (mono-dispersed) drops
as well as unequal size (poly-dispersed) drops in two and
three dimensions are presented for non-zero values of Rey-
nolds and Marangoni numbers. It is found that the drops
align themselves nearly perpendicular to the temperature
gradient. This might be an important result since it suggests
that the formation of drop layers may result in dislocations
inside the solidified material produced in microgravity
environment.

2. Formulation and numerical method

The governing equations are described in this section
in the framework of the front-tracking method. In this
method, the flow equations are written for the entire flow
field and different phases are treated as a single fluid with
variable material properties. A detailed description and
numerical properties of the front-tracking/finite-difference
method can be found in the review paper by Tryggvason
et al. [12] where some results for the thermocapillary migra-
tion of drops are also presented. In addition, the formu-
lated governing equations and the numerical solution
method employed here for the computations of thermocap-
illary migration of drops are the same as described by Nas
and Tryggvason [9]. Some validation results and an exten-
sive computational study of the thermocapillary motion of
a single drop and two drop interactions can also be found
in Nas and Tryggvason [9].

2.1. Governing equations

As mentioned above, it is possible to write the Navier—
Stokes equations as a single set of equations for the whole
domain as long as the jumps in fluid properties are cor-
rectly accounted for and interfacial tension is included.
The Navier—Stokes equations in conservative form are
given by
Opu

54— V - (puu)

0
— _Vp+ V- u(Vut V) + / 5 (x — x1) = (ot)ds,

(1)
where the last term is the interfacial tension acting on the
interface, included as a body force by representing it as a
delta function. Here u is the velocity field, p is the pressure,
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