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a b s t r a c t

We examine the performance of mapped averaging for the computation of the dielectric constant in
application to the TIP4P water potential. We compare the efficiency of conventional and mapped aver-
aging in terms of the difficulty ratio, considering four temperatures (500 K, 650 K, 1300 K, and 1800 K)
and densities from 10�6 g/cm3 to 1.0 g/cm3. We consider differences in the methods also with respect to
correlation of samples, and system-size effects. Results for 650 K are compared to experimental data as
represented by a correlation for the dielectric constant from the literature, with deviations of up to 25%
observed. Significant advantage in efficiency is seen for the mapped-averaging approach at high tem-
perature and low density, while being marginally less efficient at liquid-like densities. We also examine
the simulation data against results from a dielectric virial series to third order in density, and suggest that
an even better mapped-averaging method may be developed from consideration of pairwise interactions
of the molecular dipoles.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Solution properties have long attracted the attention of re-
searchers in chemical thermodynamics [1e4]. Molecular models of
electrolytes and aqueous solutions rely on a proper treatment of
electrostatics for an accurate description of solution behavior. A key
property relating to these considerations is the dielectric constant,
or relative permittivity. Models of water that aim to be used for
studies of solutions should give attention to whether the dielectric
constant is predicted well. It characterizes how well a solvent
screens the interactions of charges with each other, and thereby has
an appreciable effect on the general behavior of solutions. Indeed,
considerable attention has been given to evaluation of the dielectric
properties for various water models via molecular simulation
[5e8]. The dielectric constant is related to the fluctuations in the
mean square total dipole moment in the absence of an external
electric field [9,10]. It is considered one of the more difficult
properties for calculation by molecular simulation; long-range
electrostatic effects are relevant, and like all fluctuation-based
quantities, averaging tends to converge slowly.

To aid calculation of precise values of dielectric constant, we
developed a formulation of mapped averaging (MA) [11,12] for its
evaluation. Mapped averaging is a new, general method for

reformulation of the ensemble averages in statistical mechanics.
Given a property approximation based in statistical mechanical
theory, the MA framework derives new ensemble averages that
represent exactly the error in the theory. If the starting theory is
reasonably accurate, the correction given by the averages can be
evaluated with good precision, because it eliminates fluctuations
related to the known approximate behavior. We have had good
success in application of this idea to evaluation of properties of
atomic crystals, where a harmonic treatment provides a suitable
starting point [12e14]; the simulations then give directly the
anharmonic contributions to properties.

Our application of MA to evaluate the dielectric constant from
molecular simulation builds on knowledge of fluctuations in non-
interacting dipoles, such that the simulation measures only con-
tributions in excess of this. Presently we consider only rigid, non-
polarizable dipoles interacting with an external field E. When
presenting the general MA framework [11], we used application to
the dielectric constant as one of several brief examples illustrating
the effectiveness of the approach. We performed simulations of the
Stockmayer model (Lennard-Jones with point dipole), and showed
that MA at low density yields results that are much more precise
than conventional averaging with the same amount of
computation.

In this paper, we consider application to a more realistic mo-
lecular model, the TIP4P potential for water. This model has three
charged sites and one LJ site, which means there are ten pairs of
interaction between each pair of molecules, and no explicit dipole-
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dipole interaction is employed.We examine the effectiveness of MA
for such a system.We focus on calculation of the dielectric constant
of water in supercritical states. One reason is that most previous
simulation studies of the dielectric constant of water considered
the liquid state, so we provide new data as a byproduct of the study.
Additionally, in the supercritical conditions the non-interacting
dipole starting point is more appropriate, and the approach may
be anticipated to be more effective. We compare the performance
of MA and the conventional approach by consideration of the dif-
ficulty. Also we examine other performance-related features that
we did not consider in previous work, in particular the rate of decay
of correlations, and system-size effects. In applications to the
anharmonic behavior of crystals, we found large differences be-
tween conventional and mapped averaging with regard to these
issues. We also compare our simulation results with experimental
data as represented by a correlation.

The formalism and simulation details of MA for calculation of
the dielectric constant are presented in Sec. 2 and results are given
in Sec. 3. In Section 4, we summarize the findings and consider
paths for future development of the MA method for evaluation of
the dielectric constant.

2. Formalism and simulation details

2.1. Ensemble averages

We consider molecules with a fixed dipole moment, jmij ≡mD.
The energy of interaction with external field E is:

UE ¼ �E,M; (1)

where M ¼ P
imi is the total dipole moment (here and below, i

sums over all N molecules in the system). The dielectric constant is
given in terms of the second derivative of the free energy A with
respect to the field E, which yields directly the conventional form
for the ensemble average:

V2
EðbAÞ ¼ �b2

�D
M2

E
� 〈M〉2

�
(2)

This is what we will refer to as the conventional averaging
approach for evaluating the dielectric constant. For the isotropic
and homogeneous systems we consider, there is no permanent
dipole moment (〈M〉≡0), so we average just M2.

The MA formulation for this derivative is developed as follows
(additional detail is available in Ref. [11]). We derive the mapping
under an assumption that the probability of a configuration is that
for independent dipoles in a z-directed field E ¼ ð0;0; EÞ. This
assumption leads us to define the following:

pðU; EÞ ¼ expð � bUEÞ ¼
Y
i

p1ðzi; EÞ (3a)

p1ðzi; EÞ ¼ expðbmDEziÞ (3b)

qðEÞ≡
Z

dU pðU; EÞ ¼ ðq1ðEÞÞN (3c)

q1ðEÞ ¼
Z1
�1

dzip1ðzi; EÞ

¼ 2sinhðbmDEÞ=ðbmDEÞ
(3d)

Here,U is the vector of orientations for all Nmolecules, and zi is the
z-component of the orientation of dipole i. These approximations to

the true Boltzmannweight and partition function are used in a type
of conservation equation to derive the mapping, which is given via
a generalized “rotational velocity” vEi (the E superscript indicates
that this velocity describes change in orientation with respect to a
changing field E, rather than time):

v

vE

�
p1ðzi; EÞ
q1ðEÞ

�
þ v

vzi

�
p1ðzi; EÞ
q1ðEÞ

vEi

�
¼ 0: (4)

The mapping given by solution of this formula keeps the ratio
p1=q1 constant (in the Lagrangian frame) as E is varied. If the
independent-dipole approximation is valid, then the formula for
the change in free energy with E (as derived below) would be
expressed in terms of an average having no fluctuations, yielding a
result with perfect precision. To the extent the system does not
obey the independent-dipole approximation, there will be fluctu-
ations in the average; however, while some imprecision is intro-
duced, there is no loss of accuracy.

Solution to Eq. (4) with the boundary condition vEðzi ¼ 1Þ ¼ 0
yields:

vEi ¼ 1
2
bmD

�
1� z2i

�
(5)

The second derivative of the free energy is then [11]:

bAEE ¼ �
D
JEE � J2E

E
þ
D
bUEE

E
� Var½JE � bUE� (6)

where subscripts indicate derivatives with respect to E. The Jaco-
bian derivatives are given in terms of the mapping as

JE ¼ V,vE; (7a)

JEE � J2E ¼ V,vEE þ vE,V
�
V,vE

�
; (7b)

and the configurational-energy derivatives are

bUE ¼ �Mz � vE,t (8a)

bUEE ¼ �
�
vEE þ vE,VvE

�
,tþ vE,f,vE � 2vE,tE; (8b)

where t is the 3N-dimensional vector of the components of the
torque on all molecules, and f is the 3N � 3N Hessian for the energy
with respect to the orientations; also, the V operator here is the 3N-
dimensional vector of orientation derivatives.

We repeat this derivation for fields in the x and y directions,
respectively, and sum over all three directions to obtain the final
MA expression for the second derivative [11]:

V2
EðbAÞ ¼ �Nb2m2D þ b4

4

*�����
X
i¼1

N

ti � mi

�����
2+

� b3

4

*X
i¼1

N X
j¼1

N �
Vi,tj

�

�
�
mi,mj

�
� mj,Vitj,mi

+

(9)

where ti is the torque on molecule i, and Vi is the gradient with
respect to the molecule-i orientation. Equation (9) is clearly sepa-
rated into two parts. The first term in this expression is the
Clausius-Mossotti-Debye result [15], which describes fluctuations
of independent dipoles. The remaining terms represent the
correction to this approximate form, given as ensemble averages
that will be small and precise to the extent that the independent-
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